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Stochastic fluctuations in population dynamics

Blue tit
(Parus caeruleus)

Great tit
(Parus maior)
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Swan
(Cygnus olor)

Variation coefficient
CV = σN/Naverage
σlogN ≅CV  if CV<30%

Fluctuations in population dynamics
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Seychelles warbler 
(Acrocephalus sechellensis)

Fluctuations in population dynamics
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Albatross
(Diomedea exulans)

Fluctuations in population dynamics
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Soay sheep
(Ovis aries)

Chamois
(Rupicapra rupicapra)

Fluctuations in population dynamics
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CV of population fluctuations
CV = coefficient of variation = SD/Mean value
Makes sense for nonnegative variables like population size N
For CV < 30% CV ≃ SD(logN)
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Deterministic and stochastic components

Fluctuations in population dynamics can be due to

• Deterministic drivers:
- High fertility;
- Seasonality; 
- Interactions (predation …)

• Stochastic drivers:
- demographic (Bighorn sheep)
- environmental (Flamingoes in South Africa); 

  Nt+1 = λt Nt
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Examples

Bighorn sheep
(Ovis canadensis)
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Examples

Flamingo
(Phoenicopterus ruber )

Phoeniconaias minor

Circles indicate reproduction success
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Extinctions: deterministic or stochastic?
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Discrete-time demography

  Nt+1 = λt Nt

  
wi,t ⇒ Nt+1 = wi,t

i=1

Nt

∑
Individual fitness

Contribution of
individual i at time 
t  to next 
generation t + 1 

Is there a 
relationship?

N.B. Better if you always think that Nt is the number of females
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Calculating fitnesses

Female A:2+0 fitness(A)=2; fitness(B)=0+1=1; fitness(C)=3+1=4
N(2024)=2+1+4=7 N(2023)=3 𝜆_2023=N(2024)/N(2023)=7/3=2.333
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Environmental vs. demographic stochasticity

  
Nt+1 = λt Nt = wi,t

i=1

Nt

∑
  
λt =

wi,t

Nti=1

Nt

∑
where

  
wi,t = wt + δ i

  

E λt Nt = N⎡⎣ ⎤⎦ = ?

Var λt Nt = N⎡⎣ ⎤⎦ = ?

⎧
⎨
⎪

⎩⎪

  

E δ i⎡⎣ ⎤⎦ = 0

Var δ i⎡⎣ ⎤⎦ =σ d
2

⎧
⎨
⎪

⎩⎪

E wt⎡⎣ ⎤⎦ = w

Var wt⎡⎣ ⎤⎦ =σ e
2

⎧
⎨
⎪

⎩⎪
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Nt+1 = λt N = wi,t

i=1

Nt

∑

Typical 
values  of 
σe

2 and σd
2

Calculate critical population

  

λt =
wi,t

Ni=1

N

∑ =
wt +δ i

Ni=1

N

∑ = wt +
δ i

Ni=1

N

∑
E λt⎡⎣ ⎤⎦ = w

Var λt⎡⎣ ⎤⎦ =Var wt⎡
⎣

⎤
⎦ +

Var δ i
i=1

N

∑⎡
⎣
⎢

⎤

⎦
⎥

N 2 =σ e
2 +σ d

2

N

  

N >>σ d
2

σ e
2

e.g. N = 10σ d
2

σ e
2 = Nc

Environmental vs. demographic stochasticity
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Demographic stochasticity
•We use a continuous time model (birth-death process)
•Poisson assumption: in a very short time dt at most one event can occur: 
nothing, one birth, one death
•Malthusian case

- Variables pi(t) = probability that population contains i individuals at 
time t
- Demographic parameters (birth rate n and mortality rate µ are 
constant)
- n dt = probability a mother produces one birth (daughter) between t 
and t+dt
- µ dt = probability one mother dies between t and t+dt
- 1 - n dt - µ dt = probability no event
- so-called Kolmogorov equations describe dynamics of pi(t) 

• N(t) is a stochastic variable at any time t (stochastic process) 

  
N t( ) = E N t( )⎡⎣ ⎤⎦ = ipi t( )

i=0

∞

∑ ⇒
dN t( )

dt
= ν − µ( ) N t( )

Important property of the expected value of N(t)  at any time t
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Realizations of birth-death stochastic process
"RS" ha 50 colonne, in ognuna delle quali ci sono le densità di popolazione corrispondenti ad 
una simulazione per un tempo uguale a Tmax. Possiamo rappresentare le prime 5 replicazioni 
con la soluzione deterministica
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N(t)=N(0)exp(rt) r =ν − µ

Variance of total number increases with time
There can be extinctions!
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p0 t( ) = µexp rt( )− µ
ν exp rt( )− µ

⎛

⎝
⎜

⎞

⎠
⎟

N0

⇒

if r < 0,   lim
t→∞

p0 t( ) =
if r = 0,   lim

t→∞
p0 t( ) =

if r > 0,   lim
t→∞

p0 t( ) =

⎧

⎨
⎪⎪

⎩
⎪
⎪

The extinction risk

Long-term risk

which is the same equation that governs the dynamics of the deterministic Malthusian model (see eq. ??
at page ??). Therefore, it turns out

N(t) = N(0) exp(rt) = N0 exp(rt)

which implies that the average population size increases or decreases over time in accordance with the
instantaneous rate of growth r = ⌫ � µ being positive or negative. Note that the average must be
calculated from the infinite possible time evolutions (the realizations of the stochastic process) that can
be followed by the population starting from the initial condition N0.

However, one must not think that nothing changes with respect to the deterministic model. In
particular, this result does not imply that the population can become extinct only if the growth rate r is
negative. After some non-elementary calculations starting from an infinite system of nonlinear di↵erential
equations (Kolmogorov equations) in the variables pi(t) - i.e. the probabilities that the population be
composed of exactly i = 0, 1, 2, . . . individuals - one gets the most important result of the theory of
demographic stochasticity. This result concerns the dynamics over time t of the probability p0(t) that
the population be composed of zero individuals, or in other words of the extinction risk. One can in fact
prove that the time dynamics of p0 is given by the formula

p0(t) =

✓
µ exp(rt)� µ

⌫ exp(rt)� µ

◆N0

=

✓
µ exp(rt)� µ

(r + µ) exp(rt)� µ

◆N0

, (2)

where N0 is the initial number of adult females (for simplicity we can assume that the sex ratio remains
constant over time and does not a↵ect the birth rate).

First of all, we note that the extinction probability is positive even for r > 0. This is a fundamental
result: demographic stochasticity can lead to extinction even Malthusian populations with a positive
growth rate. Secondly, we can calculate the extinction probability of the population as t tends to
infinity. This calculation allows us to understand how likely the population is to die out in the long run.
Obviously, the asymptotic extinction risk depends on the value of parameter r. Suppose first that r < 0;
one obtains

lim
t!1

p0(t) =

✓
�µ

�µ

◆N0

= 1.

So in the long run extinction is certain for populations with negative growth rate. The result is indeed
a foregone conclusion!

Suppose now that r > 0. It is easy to get

lim
t!1

p0(t) = lim
t!1

✓
µ exp(rt)� µ

⌫ exp(rt)� µ

◆N0

=
⇣µ
⌫

⌘N0

=

✓
µ

r + µ

◆N0

.

Therefore, in the long run, there exists a non-vanishing extinction probability even for populations that
on the average are growing, as shown in Fig. 9.

However, it is worth noting that a long time might be necessary before the extinction probability
becomes close to the long-term value. Recalling that 1/µ is the average lifetime of an organism belonging
to the population - and is also the average generation length in the case of semelparous populations -
we can wonder what the risk of extinction is after a reasonable time, for instance 10 or 50 generations.
Calculations are easy thanks to eq. 2. Table 2 reports the results of computations that show that, for
high mortality and small (albeit positive) growth rate, the probability of extinction after 50 generations
is not very di↵erent from the asymptotic one. It should be noted that the extinction probability is
anyway very small for populations with more than 50 individuals.

Finally, we can calculate the extinction probability for stationary populations (r = 0, namely they are
stationary from a deterministic viewpoint). This is a bit critical, because we must resort to de L’Hôpital
rule for indeterminate forms:

lim
r!0

p0(t) = lim
r!0

✓
µt exp(rt)

(µ+ r)t exp(rt) + exp(rt)

◆N0

=

✓
µt

1 + µt

◆N0

.

We can then easily calculate the asymptotic extinction probability

lim
t!1

p0(t) = lim
t!1

✓
µt

1 + µt

◆N0

= 1.
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r < 0

r > 0

r = 0
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p0(t) = probability that population contains 0 individuals at time t = 
probability of extinction = probability that time of extinction is ≤ t 

N0 = number of 
reproductive 
females
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Extinction probability 
(demographic stochasticity)

 

N0 Asymptotic 
Extinct. Prob.  Extinct. 10 Extinct. 50 

1 0.909090909 0.8634105 0.908531 
5 0.620921323 0.4798291 0.61901 
10 0.385543289 0.2302359 0.383174 
50 0.008518551 0.0006469 0.00826 
100 7.25657E-05 4.185E-07 6.82E-05 
500 2.01214E-21 1.284E-32 1.48E-21 

Probability of asymptotic 
extinction and after 10 and 
50 generations 
 r = 0.05 and µ = 0.5 time-1 
generation time = 1/µ 
 

 

Average and median extinction time (hint: p0(t) is a cdf) 

𝜈 = 0.55
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lim
t→∞

p0 t( ) = 1

Demographic stochasticity and density-
dependence

In nonMalthusian case
Extinction is certain in the long term, 
however …
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Environmental stochasticity

  
Nt+1 = wi,t

i=1

Nt

∑ =  wt Nt =  λt Nt

where

  
λt = δ tΛ Nt( ) = exp εt( )Λ Nt( )

  

E εt⎡⎣ ⎤⎦ = 0

E εt
2⎡⎣ ⎤⎦ =Var εt⎡⎣ ⎤⎦ = σε

2

E εtεt−τ⎡⎣ ⎤⎦ = 0

⎧

⎨
⎪⎪

⎩
⎪
⎪

  

E δ t⎡⎣ ⎤⎦ = exp σε
2 2( ) >1

Median δ t⎡⎣ ⎤⎦ = exp Median ε t⎡⎣ ⎤⎦( ) = 1

Mode δ t⎡⎣ ⎤⎦ <1

⎧

⎨
⎪⎪

⎩
⎪
⎪

White 
noise

Lognormal 
distribution
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Environmental stochasticity: the Malthusian case

   
Nt =  λt−1λt−2λ0 N0 = λ t exp εt−1 + εt−2 ++ ε0( )N0

where
  
λt = δ tΛ Nt( ) = exp εt( )λ

  

E ε i
i=0

t−1

∑⎡
⎣
⎢

⎤

⎦
⎥ = E ε i⎡⎣ ⎤⎦

i=0

t−1

∑ = 0

Var ε i
i=0

t−1

∑⎡
⎣
⎢

⎤

⎦
⎥ = Var ε i⎡⎣ ⎤⎦

i=0

t−1

∑ = tσε
2

⎧

⎨
⎪
⎪

⎩
⎪
⎪

Take logarithms

  
log Nt( ) =  t log(λ) + log N0( ) + ε i

i=0

t−1

∑

Result: log(Nt) is distributed as a Normal with 

  

E log Nt( )⎡⎣ ⎤⎦ = t log λ( ) + log N0( ) + E ε i⎡⎣ ⎤⎦
i=0

t−1

∑ = rt + log N0( )

Var log Nt( )⎡⎣ ⎤⎦ = E log Nt( ) − E log Nt( )⎡⎣ ⎤⎦( )2⎡
⎣⎢

⎤
⎦⎥
= E ε i

2

i=0

t−1

∑⎡
⎣
⎢

⎤

⎦
⎥ = Var ε i⎡⎣ ⎤⎦

i=0

t−1

∑ = tσε
2

⎧

⎨
⎪
⎪

⎩
⎪
⎪

λ = median!
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Environmental stochasticity: the Malthusian case

ln(Nt) ∼ N(rt+ln(N0),t𝜎𝜀2)
r = ln𝜆
To estimate r 
• use linear regression of 

ln(Nt) vs t
Or
• use 𝜆t = Nt+1/Nt  , however…    
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then population increases. 
Remark: logarithm of median must be positive not logarithm of average! 

  
log λ( ) = r > 0

In fact, with lognormal noise

  
E λt⎡⎣ ⎤⎦ = E λδ t⎡⎣ ⎤⎦ = λE δ t⎡⎣ ⎤⎦ = λ exp

σε
2

2

⎛

⎝⎜
⎞

⎠⎟
> λ

Therefore, using the average of  λt’s can be misleading and produce an 
overestimation of the population growth rate 

If

Example
Annual population with finite rate of increase equal to 1.1 in normal years and 
0.3 in critical years that occur once in a decade. What is the fate of the 
population?

Environmental stochasticity: the Malthusian case
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E λt⎡⎣ ⎤⎦ = 1.02

Median λt⎡⎣ ⎤⎦ = 0.966

Environmental stochasticity: the Malthusian 
case

0.9*1.1+0.1*0.3ln(1.1)*0.9+ln(0.3)*0.1=ln(lambda)
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Extinction risk and environmental stochasticity
Whenever environmental stochasticity brings population below a critical 
threshold it can be captured by an extinction “vortex”:

  
N < Nc ⇒ quasiextinction

How to estimate quasiextinction probability? Based on r and σ2ε…

How to estimate σ2ε ? 

  
log Nt+1 Nt( ) =  r + εt

  
ε̂t = log Nt+1 Nt( ) − r̂

Use estimate of r

  
σ̂ ε

2 = 1
m− 2

ε̂ i
2

i=1

m−1

∑
Tail of Normal
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Normal distribution 
table

Prob{Nt < Nc} = Prob{lnNt < lnNc} =
Introduce standard Normal 

Zt =
ln(Nt )− rt − ln(N0)

tσε

Zc =
ln(Nc )− rt − ln(N0)

tσε

Prob{lnNt < lnNc} = Prob{standard 
normal < Zc} 
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Environmental stochasticity and density 
dependence

Red Deer abundance in Yellowstone Park, and logarithmic rate of 
increase vs deer abundane (data and linear regression) 

  
ln

Nt+1

Nt

⎛

⎝⎜
⎞

⎠⎟
= logλ − βNt + ε t

𝑁! = 𝜆𝑁!𝑒𝑥𝑝 −𝛽𝑁! + 𝜖!
Stochastic Ricker model
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Nt+1 = λ Ntexp(-β Nt+εt)

λ = 4, β = 0.001, σε = 0.385

• average, standard deviation  and median of 
population abundance;
• extinction probability vs time;
• average and median extinction time

Environmental stochasticity and density dependence
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Extinction vortices
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Population Viability Analysis (PVA)

Software: VORTEX, RAMAS, 
ALEX …

http://www.ramas.com 

African elephants

http://www.ramas.com/
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How to 
classify 

threatened 
species

A

B

C

D

E

Equal risk curves

Risk=Decline×ProbDecline (1991)
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IUCN (International Union for Conservation of 
Nature) classification: Mace and Lande slightly 

modified

Ex. Category CR

• Criterion D: 
Population size of 
mature individuals N 
< 50

• Criterion E: Extinct. 
Probab. ³ 50%within 
next 10 years or next 3 
generations

http://www.iucn.org/
https://www.iucnredlist.org/

https://www.iucn.org/
https://www.iucnredlist.org/
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Endangered 
vascular plants in 

Italy

Endangered 
vertebrates in 

Italy


