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Ovis canadensis 
nelsoni

Individual level: patterns of growth

Pinus 
ponderosa

Helianthus 
annuus

Nautilus sp.
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Ecosystem level: the tigerbush pattern
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Chapter 5
Movement of organisms and the dynamics of populations in
space

Space does matter at every scale of the hierarchical structure of biology, from nucleic acids to cells, from tis-
sues to organisms, and from populations to the whole biosphere. Spatial patterns that we observe are clearly
the result of aggregation phenomena that are constrained by fundamental biological or behavioural mech-
anisms. The shape of flowers, horns, shells, cones clearly reveals spatial organization, often characterized
by a striking and fascinating regularity. Spatial patterning, though less regular and possibly time-varying,
is also shown by many populations and ecosystems, e.g. schools of fish, flocks of birds or the tiger bush
of many arid regions (see Fig. 5.1). Waves are also a typical spatial phenomenon that characterizes the
functioning of many populations and ecosystems. Of particular importance to the present Anthropocene is
the invasion of new species (often alien species that can contribute to the extinction of endemic ones) and
the spread of pathogens.

Fig. 5.1 Aerial view of tiger bush in the W Bénin-Niger National Park. Average distance between two successive gaps in the
vegetation is 50 meters. Photo by Nicolas Barbier [CC BY-SA 3.0]

The models illustrated so far are a very approximate description of simple ecological systems, because
the real challenges that ecology poses to modelling come substantially from the complex spatio-temporal
dynamics of populations, communities and ecosystems. Within this complexity, di�erent scales are clearly
seen, often hierarchically organized: for example, an exhaustive explanation of the functioning of a popu-
lation of small mammals presupposes an understanding of (i) the physiology and behavior of individuals,
which occurs on a short time scale (days), (ii) the vital cycle (growth, survival, reproduction), describable on
a longer time scale (months), and (iii) the demography of the entire population, occurring on an even longer
time scale (years). If we then think that every population is spatially organized and inserted in ecosys-
tems whose essential components range from the microscopic dimensions of bacteria (with the relative
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Movements of a red fox 
from telemetry (Sniff and Jensen 1969)

From the individual to the population level

Lagrangian approaches 
follow individuals

Red fox (Vulpes vulpes)
e.g., random walks

Eulerian approaches 
describe spatial densities

Muskrat (Ondatra zibethica)

Skellam 1951
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Population level: waves of species

Apis mellifera scutellata
(Killer bee)

Apis mellifera 
(European bee)

Streptopelia decaocto
(Collared dove)
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COVID-19 (SARS-CoV-2) diffusion all over the 
world (January-May 2020)



The area 
effect
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Island biogeography
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Populations are often spatially subdivided
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Discrete populations as subpopulations
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A very much studied case

Åland Islands (Finland)
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Glanville fritillary butterfly 
(Melitaea cinxia)

Ilkka Hanski 



Metapopulations: populations of populations
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Euphydryas editha

Harrison et al. (1988)
The American Naturalist 

132:360-382.
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The influence of man: habitat fragmentation

Forests in Costarica

Forests in England

Brazil
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The monk seal

Monachus monachus

Habitat originario

Habitat attuale
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Reserve area and extinction

National parks in western USA
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Movements of a red fox 
from telemetry (Sniff and Jensen 1969)

Analysing the movement of organisms and the 
consequences on their spatial distribution 

Lagrangian approaches 
follow individuals

Red fox (Vulpes vulpes)
e.g., random walks

Eulerian approaches 
describe spatial densities

Muskrat (Ondatra zibethica)

Skellam 1951
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The diffusion-advection equation
 p q=1-p 

0 Dx -Dx 2Dx -2Dx 

Random walk

p = Prob. moving right

•n(x,t) Δx = No. of organisms between x and x+ Δx at 
time t

•p n(x,t) Δx = No. of organisms moving from x to x+Δx in 
time interval Δt

•Letting Δx and Δt tend to zero suitably we get

  

∂n
∂t

= −v
∂n
∂x

+ D
∂2n

∂x 2

advection (transport, drift)
v = velocity

diffusion
D = diffusion coefficient
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The diffusion approximation (1)
How can we obtain the diffusion-advection equation from random walk?

 p q=1-p 

0 Dx -Dx 2Dx -2Dx 

1st assumption: particle number is very large
 n(x,t) = particle concentration

Mass balance:
 n(x,t + Δt) Δx = p n(x-Δx,t) Δx + (1-p) n(x+Δx,t) Δx 

Expanding both sides we get

p = Prob. moving right

   

n(x,t)+ ∂n
∂t Δt +O(Δt2) = p n(x,t)− ∂n

∂x Δx+ 1
2
∂2n
∂x2 Δx2 +O(Δx3)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+

+(1− p) n(x,t)+ ∂n
∂x Δx+ 1

2
∂2n
∂x2 Δx2 +O(Δx3)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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The diffusion approximation (2)

   
∂n
∂t +

O(Δt2)
Δt = (1− 2p)∂n

∂x
Δx
Δt +

1
2
∂2n
∂x2

Δx2

Δt +O(Δx3)
Δt

Dividing by Δt we get

Let Δx and Δt tend to zero in the following way (2nd assumption)

average population velocity è v, a finite constant

 

Δx
Δt =

  

1
2
Δx2

Δt →D

   
(2p−1)Δx

Δt = pΔx
Δt +(1−p)−Δx

Δt =

absolute movement speed of a single particle è∞

= finite positive constant = diffusion coefficient

Since Δx /Δt è∞ advection velocity (drift) is finite only if p è 1/2

  

∂n
∂t

= −v
∂n
∂x

+ D
∂2n

∂x 2



Safe tracer in a river
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Pure diffusion in one dimension
• We can get rid of drift by switching to spatial coordinate travelling at 

speed v : u(x,t) = n(x+vt,t) 
 u satisfies equation of pure diffusion

  

∂u
∂t

= D
∂2u

∂x 2
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Pure diffusion in one dimension

• n(x,t) = concentration in x at time t

• with suitable
– initial conditions n(x,0) = n0(x)
– boundary conditions in space

  

∂n

∂t
= D

∂2 n

∂x 2

n(x , t ) ≥ 0 ∀x t ≥ 0



29/10/24 Spatial ecology 24

Boundary and initial conditions
• Infinite domain (-∞,+∞), Cauchy problem

– Initial conditions
 n(x,0) = n0(x)
– Solution must be bounded (otherwise not unique)

"
!"

#"
𝑛 𝑥, 𝑡 𝑑𝑥 = "

!"

#"
𝑛$ 𝑥 𝑑𝑥 = Initial number

• Bounded domain
– Space domain is bounded: in one dimension a finite interval [0, L]
– Initial conditions
 n(x,0) = n0(x) given
1. Unsuitable habitat outside domain (absorbing boundary, Dirichlet 

problem)
2. No flux through the boundary (reflecting boundary, Neumann 

problem)
3. Environment is a circle or a sphere or a torus, (periodic conditions, 

Dirichlet problem)
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n(0,t) = n(L,t) = 0

0),(),0( =
¶
¶

=
¶
¶ tL

x
nt

x
n

0 L

0 L

0 L

0=L

n(0,t) = n(L,t) 

Absorbing barrier

Reflecting barrier

Periodic conditions
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Simulating diffusion (and drift)

Diffusion and 
drift in 
unbounded 
habitat

Diffusion in bounded 
habitat (absorbing 

barrier)
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Diffusion in infinite 
domain (no barriers)  

0 x 

  

p(x,t)dx = 1
−∞

+∞

∫
n(x,t) = Np(x,t)

p(x,t) = 1

4πDt
exp − 1

2
x2

2Dt
⎛
⎝⎜

⎞
⎠⎟

N organisms are released in a given location and move

p(x,t) = n(x,t)/N = fraction of organisms per unit space

SOLUTION!

Normal 
distribution

27Spatial ecology

n(x ,t)dx =N for	any	t
−∞

+∞

∫
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Solution properties
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0

p x 0. 005,( )

p x 0. 1,( )

p x 0. 4,( )

p x 0. 9,( )

p x 1. 5,( )

55- x

Standard deviation σx =

Average distance from release point

2Dt

  
E x⎡⎣ ⎤⎦ = x p(x,t) dx = 2

−∞

+∞

∫ xp(x,t) dx =
4Dt
π

= 1.128 Dt
0

+∞

∫
28Spatial ecology
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Diffusion in 2 dimensions (isotropic)

  

n(x,y,t)= A
4πDtexp −1

2
x2+ y2

2Dt
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 
Bell

fraction outside circle of radius R =   
  
exp − R2

4Dt

⎛

⎝⎜
⎞

⎠⎟

TimeArea containing 99% of 
organisms at different times

Release A organisms at 0

  

R
α
= 2 ln(1 /α ) Dt

R
0.01

= 4.292 Dt

"velocity "÷ D / t

α = fraction outside R

Velocity is decreasing with time
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Diffusion in a bounded domain (e.g. island)

0
xL

n(x,0) = n0(x)
n(0,t) = n(L,t) = 0  

∂n

∂t
= D

∂2 n
∂x 2

Absorbing barrier

30Spatial ecology



29/10/24 Spatial ecology 31

Fourier series
• Periodic and 
continuous function f(x)

• k/P = frequency 
• 2πk/P = angular frequency 
• k = wave number

0 P 2P-2P -P x

  

f (x)= a0
2 + ak cos 2πk

P x
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟k=1

∞
∑ +bk sin 2πk

P x
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

ak =
2
P f (x)cos 2πk

P x
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

0

P

∫ dx= 2
P f (x)cos 2πk

P x
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−P
2

P
2

∫ dx

bk =
2
P f (x)sin 2πk

P x
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

0

P

∫ dx= 2
P f (x)sin 2πk

P x
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−P
2

P
2

∫ dx

a0
2 = 1

P f (x)dx=mean value
0

P

∫

spatial frequency

1/P 2/P 3/P 4/P 5/P0
w w w w w w
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Absorbing boundary
 

x 

n 

0 L 2L -L -2L 3L 

  
n(x,t) = Bk (t)sin

k=1

∞

∑ π k
L

x
⎛
⎝⎜

⎞
⎠⎟

spatial frequency
0 1/2L 2/2L 3/2L 4/2L 5/2L

  
Bk (t) ÷ exp(−Dηk

2t) ηk =
π k
L

Excited modes

n(0,t) = n(L,t) = 0
for any t

This mode is not excited 
because boundary is 

absorbing

Period = 2 L
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Simulation of diffusion in finite habitat 
with absorbing boundary

n(x,t) è 0 for t è∞ 
Modes of smaller wavelength è 0 more rapidly 

  
Bk (t) ÷ exp(−Dηk

2t) ηk =
πk
L



Spatial ecology

Ondatra zibethica

Skellam 1951

Muskrat invasion
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Spatial ecology

Reaction-Diffusion equation

  

∂n

∂t
= νn − µn + D

∂2n

∂x 2

n(x ,t ) ≥ 0

BIRTHS DEATHS DIFFUSION

Possible assumptions on reaction terms

• ν = constant         μ = constant     r = ν - μ = constant

First-order reaction, Malthusian (exponential) growth

• ν and μ depend on local concentration n     

    ν - μ = R(n(x,t)) = per capita rate of increase

  

∂n

∂t
= R(n )n + D

∂
2

n

∂x
2
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Infinite domain – Malthusian demography

Guess: n(x,t) grows exponentially

Introducing
z(x,t) = exp(-rt) n(x,t)
one obtains

  

∂n

∂t
= rn + D

∂
2

n

∂x
2

  

∂z
∂t

= −r exp(−rt)n(x,t)+ exp(−rt)
∂n
∂t

= −rz + exp(−rt) D
∂2 n
∂x2 + rn

⎡

⎣
⎢

⎤

⎦
⎥ = D

∂2 z
∂x2

Therefore n(x,t) = z(x,t) exp(rt) with z(x,t) satisfying pure diffusion model

r = instantaneous rate of increase
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Simulation of diffusion and Malthusian 
growth in infinite domain 

n0(x) = Aδ(x) 

0 x

  
n(x,t) = A

4πDt
exp − 1

2
x2

2Dt
⎛
⎝⎜

⎞
⎠⎟

exp(rt)
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Spatial ecology

Infinite domain: diffusion and growth in 2 dimensions

  
n(x,y,t) = A

1
4πDt

exp rt − 1
2

x2 + y 2

2Dt
⎛
⎝⎜

⎞
⎠⎟

Release A organisms at origin of x-y plane  

  
fraction of A outside radius Rt = α = exp rt − 1

2
Rt

2

2Dt

⎛

⎝⎜
⎞

⎠⎟

  Rt
2 = 4Drt 2 − 4Dt lnα

0 10 0 20 0 30 0 40 0 50 0
0

10 0

20 0

30 0

40 0

t ime

Ex
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31 5.4 06

0

R t( )

D- l n fmi n( )×

D r×( ). 5
2 t× D r×( ). 5×+

50 00 t

Asymptotic velocityprevailing term

Expansion speed = 2

Contrast with pure diffusion!
 rD
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Rt = 4Drt2 −4Dt lnα → 4Drt2 =2t Dr+constant
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Grey squirrels 
and Argentine 
ants expansion
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Spatial ecology

Expansion speeds of different species

Impatiens

Lymantria

Sciurus

Littorina

Botrylloides

  velocity→2 Dr
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Spatial ecology

Absorbing boundary
Question: Introduce N organisms in an island of size L. Will the 
population grow or become extinct?

 

x 

n 

0 L 2L -L -2L 3L 

frequency0 1/2L 2/2L 3/2L 4/2L 5/2L

Excited modes
This mode is not excited 
because boundary is 
absorbing (mean value =0)   

r −D π 2k 2

L2Rates of eponential increase =

Rate is maximum for wave 
number k = 1
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Spatial ecology

The critical size
If r < Dπ2/L2 , then r < Dk2π2/L2 for any k

n(x,t) è 0 for t è ∞

Therefore L < Lcr =  implies extinction  
 
π D

r

Reaction can go on / population can establish in the island only if 

r > 0 and L > Lcr.

D/r

Threshold depends on the ratio 
of dispersal coefficient to 
population increase rate

Lcr
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Spatial ecology

Simulation of diffusion and Malthusian growth in 
bounded habitat with absorbing boundary (island)

L < LcrL > Lcr
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Spatial ecology

Diffusion and reaction in 2D or 3D
• Extensions are fairly obvious. Diffusion coefficients can be 

equal for different directions (isotropy) or different for different 
directions (anisotropy).

• Basically, nothing changes from a qualitative viewpoint
• For instance: isotropic case in 2D

 critical patch/island area
  Acr = c0π2D/r
 with c0 = 1.84 for circular patch
         c0 = 2 for square patch

∂n
∂t

= D ∂2n
∂x2

+ ∂2n
∂y2

⎛
⎝⎜

⎞
⎠⎟
+ rn
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Diffusion and demographic growth with density 
dependence

3 0 2 0 1 0 0 1 0 2 0 3 0
0

5 0

1 00
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1 20

0

d x 0 .0 1,( )

d x 0 .1,( )

d x 1,( )

d x 2,( )

d x 4,( )

d x 8,( )

d x 1 2,( )

3 03 0- x

  2 DR(0)

R(n(x,t)) = per capita rate of increase (e.g. logistic = r(1-n/K)

Speed of wavefront =

Lcr =                    one-dimensional habitat

 Acr =                   circular patch

 Acr =               square patch

  π D R(0)

  
2π 2 D

R(0)

  
1.84π 2 D

R(0)

Critical patch size
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Dynamics of metapopulations

46Spatial ecology



29/10/24

Island biogeography and …
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…the metapopulation paradigm
Since the area over which control is sought is much greater than 
that of the local population, the control strategy must be defined 
for a population of populations in which local extinctions are 
balanced by emigration from other populations.

Levins 1969
Bulletin of the Entomological Society of America 15:237-240

Le
vi

ns
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Islands and metapopulations

The next step is the assertion that the distribution of many species even on 
the mainland is insular. Mountain tops, lakes, individual host plants, a fallen 
log, a patch of vegetation, a mammalian gut, or, less obviously, a region of 
optimal temperature or humidity are all islands for the appropriate 
organisms. Therefore the insular model is much more broadly applicable.

Levins 1970
Some Mathematical Questions in Biology (p. 78)

islands

ephemeral
environments

land use

ecosystems
management

Habitat fragmentation

Aerial view of an oil road in Ecuador

June July (6 weeks later)

Six Rivers National Forest,
California

?
Pseudacris 
regilla
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Habitat fragmentation

Forests in Costarica

Forests in England

Brazil

50Spatial ecology
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Habitat fragmentation
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Natural habitat can 
be patchy

Euphydryas editha
Harrison et al. (1988)

The American Naturalist 
132:360-382.
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L. E. Bertassello et al. Persistence of amphibian metapopulation occupancy in dynamic 
wetlandscapes. Landscape Ecology (2022) https://doi.org/10.1007/s10980-022-01400-4

Another example

North Dakota wetland (USA)

Rana pipiens
Leopard frog

Cottonwood Lake 
Study Area

53



Durighetto, N., Vingiani, F., Bertassello, L. E., Camporese, M., & Botter, G. 
(2020). Intraseasonal drainage network dynamics in a headwater catchment of 
the Italian Alps. Water Resources Research, 56, e2019WR025563. 
https://doi.org/10.1029/2019WR025563

Habitat may vary

Valfredda (Dolomiti bellunesi)

54

Salamandra atra



N. Durighetto. G. Botter (2020). Time-lapse visualization of spatial and temporal patterns of stream network 
dynamics. Hydrological Processes. 2021;35:e14053
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How many variables? The problem of scale

+

Describing 
the habitat...

...and
the local

demography

theoretical realistic landscape

boolean intermediate discrete individuals 
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Models of metapopulation dynamics

Several possibilities

Will deal with 
boolean 
models only

57Spatial ecology



Thinking spatially in a boolean way 

Two shifts in our usual frame of reference
population size è population persistence

local scale è regional scale

Multiple patches decrease the risk of extinction: an example
τ = probability of local extinction measured on a yearly scale

• Suppose we have a single population in which τ = 0.7.
• What is the probability Pn that such a population will 
persist for n years?
•Pn =(1- τ)n

• Now imagine we have  x  identical populations, i.e. x
patches (τ = 0.7). What is the probability of regional 
persistence for one year?
•P(ext all local pop)= τ x  Prob(persistence)= 1- τ x
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Simple approaches (spatially implicit and boolean)

p = proportion of occupied patches
C’ (p) = colonization rate = proportion of sites 

successfully colonized per unit time

E’ (p) = extinction rate = proportion of sites that
go extinct per unit time

Main underlying hypotheses
• Homogeneous patches
• No spatial structure
• No time lags
• Large number of patches

What is the simplest model for 
the dynamics of patch 
occupancy?

  
dp
dt

= ′C − ′E = C p( ) 1− p( )− E p( ) p

29/10/24 Spatial ecology 59

• C(p) = probability of colonization of one empty patch per unit time
• E(p) = probability of extinction of one occupied patch per unit time



Version 1: The island-mainland model

• Is there any equilibrium?
• What is the main property? 

C p( ) = c

E p( ) = e

⎧
⎨
⎪

⎩⎪
  
dp
dt

= c 1− p( )− ep

Version 2: The metapopulation model

 

C p( ) = cp

E p( ) = e

⎧
⎨
⎪

⎩⎪   
dp
dt

= cp 1− p( )− ep

• Similarity with the logistic equation
• Is there any equilibrium?
• The persistence-extinction boundary
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Version 1: The island-mainland model

• Is there any equilibrium?
• What is the main property? 

C p( ) = c

E p( ) = e

⎧
⎨
⎪

⎩⎪
  
dp
dt

= c 1− p( )− ep
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• Linear equation: solution is exponential
• dp/dt = c – (e+c)p
• Equilibrium dp/dt = 0   à pEQ =c/(e+c)

t

p
pEQ

p0

Exponential converges 
as exp(-(e+c)t)



Version 2: The genuine metapopulation model

• Similarity with the logistic equation
c-e replaces r; (c – e)/c = 1-e/c  replaces K

• Is there any equilibrium?
pEQ = 0 if c < e    
pEQ = 1-e/c otherwise

In fact, if c < e then 1-e/c < 0
Also, for p small the derivative dp/dt is < 0
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dN
dt =N

•
=rN−bN2=rN(1−br N)=rN(1−N

K )

dp
dt

= cp(1− p)−ep= (c −e)p− cp2 = (c −e)p 1− p
(c −e)

c

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

time

p

0

pEQ



Version 2: The genuine metapopulation model

• The persistence-extinction boundary in the parameter plane 
c–e is where there is a switch from metapopulation 
persistence to metapopulation extinction.

It is thus c = e 
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persistence-extinction boundary 



Incorporating habitat destruction in Levins’ model

 
dp
dt

= cp h− p( )− ep

h = proportion of remaining suitable habitat
out of the original habitat

h - p = fraction of empty suitable patches

at the equilibrium...

  

p* =
h− e

c
if h > e

c

0 otherwise

⎧

⎨
⎪

⎩
⎪

...and the persistence-extinction boundary
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c > e/h à persistence
c= e/h  pers.ext. boundary



Disturbances are important: environmental catastrophes

floods
forest fires

rinderpest

South Africa 1897
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Incorporating environmental catastrophes in Levins’ model

  
dp
dt

= cp 1− p( )− e+ m( ) p

m = rate of occurrence of catastrophes
wiping out occupied patches

At equilibrium...

  

p* =
1− e+ m

c
if c > e+ m

0 otherwise

⎧

⎨
⎪

⎩
⎪

...and the persistence-extinction boundary
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The synergistic effects of habitat destruction and 
environmental catastrophes

 
dp
dt

= cp h − p( ) − e + m( ) p

At equilibrium

Persistence-extinction boundary

m
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p*= h− e+m
c

if		h> e+m
c

0														otherwise

⎧
⎨
⎪

⎩⎪

c > (e+m)/h à persistence



Other approaches (a quick review)

Presence-absence CA

Molofsky (1994)
Ecology 75:30

+ spatially explicit
+ very flexible
– boolean

Hiebeler (1997)
J. theor. Biol. 187:307

The Spatially Realistic Levins 
Model

   

dpi

dt
= Ci p( ) 1− pi( )− Ei pi

+ realistic landscapes 

+ patch specific extinction and 
colonization functions

- boolean

Hanski and Ovaskainen (2000) 
Nature 63:151
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Other approaches (a quick review)

Earn al. (2000) Science 290:1360

Coupled maps

Hastings (1993) Ecology 74: 1362
Allen et al. (1993) Nature 364:229

+ spatially explicit
+ structured
– no discrete individuals

Gyllenberg and Hanski (1993) Am. Nat. 142:17

+ different patch areas (y)
+ structured (x) 
– spatially implicit

PDE
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The spatially realistic Levins model 
(Hanski 2000)

Geographic Information System
Patch areas, 

centroids, distances

Ilkka Hanski 
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dpi

dt
= Ci p( ) 1− pi( )− Ei pi

pi =  probability that patch i is occupied

Ai =  area of patch i

Ei =  extinction rate = e
Ai

Ci =  colonization rate = c l ji Aj p j
j≠i

n

∑
l ji =  probability that propagule from j reaches patch i = a function of distance d ji lii = 0

l ji = Lexp(-αd ji )    exponential dispersal kernel

The spatially realistic Levins model (Hanski 2000)

1/a = average dispersal distance
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The condition for metapopulation persistence (Hanski 2003)

 !

mij = lijAiAj !!!for!j ≠ i mii = 0 mij = mji

M = mij
⎡⎣ ⎤⎦ = !symmetric!migration!matrix

pi =
c
Ai

mji pj 1− pi( )− ec pij≠i

n

∑⎡
⎣
⎢

⎤

⎦
⎥

λM = !dominant!eigenvalue!of!M

Condition!for!persistence

λM > e
c

= metapopulation capacity

pi=0 for all i is an equilibrium
Is this equilibrium stable or 
unstable? If unstable, 
metapopulation can persist
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The condition for metapopulation persistence (Hanski 2003)

Discard quadratic terms (linearization around p=0)

!pi =
c
Ai

mjipj −
e
c
pi

j≠i
∑⎡
⎣
⎢

⎤

⎦
⎥

p=

p1
p2
.
pn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

A=

A1 0 0 0
0 A2 . 0
. . . .
0 0 . An

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

M =

0 m12 ... m1n

m12 0 ... m2n

. . . mn−1,n

m1n m2n.... mn−1,n 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

I ==

1 0 0 0
0 1 . 0
. . . .
0 0 . 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

!p= cA−1 M − e
c
I

⎛
⎝⎜

⎞
⎠⎟
p= Bp

p=0 is unstable if at least one 
eigenvalue of B is positive



Eigenvalues and eigenvectors of a matrix
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𝐵 =

𝑏!! 𝑏!"	 ⋯ ⋯ 𝑏!#
𝑏"! 𝑏""	 ⋯ ⋯ 𝑏"#

⋮ ⋮	 ⋮ ⋮ ⋮
⋮ ⋮	 ⋮ ⋮ ⋮

𝑏#! 𝑏#"	 ⋯ ⋯ 𝑏##

                            𝑝 =
𝑝!
𝑝"
⋮
𝑝#

𝐵𝑝 = 𝜆𝑝

If there exists p ¹ 0 satisfying the equation, l is an eigenvalue of B and p is the corresponding 
eigenvector

𝐵 − 𝜆𝐼 𝑝 = 0
𝑑𝑒𝑡 𝐵 − 𝜆𝐼 = 0

This is a polynomial of degree n equated to 0. The equation has n complex solutions  that are 
the eigenvalues of B. The corresponding p’s are the eigenvectors associated to the eigenvalues. 
The eigenvalue with the largest real part is the dominant eigenvalue. If B is symmetric all the 
eigenvalues are real and the dominant eigenvalue is the largest one.
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The condition for metapopulation persistence (Hanski 2003)

 !

mij = lijAiAj !!!for!j ≠ i mii = 0 mij = mji

M = mij
⎡⎣ ⎤⎦ = !symmetric!migration!matrix

pi =
c
Ai

mji pj 1− pi( )− ec pij≠i

n

∑⎡
⎣
⎢

⎤

⎦
⎥

λM = !dominant!eigenvalue!of!M

Condition!for!persistence

λM > e
c

= metapopulation capacity

pi=0 for all i is an equilibrium
Is this equilibrium stable or 
unstable? If unstable, 
metapopulation can persist


