The importance of age structure

5000

4000

2000

1000

rees (# ha 3000 (a) y = 360.2(1 + 10.112exp(-0.0419age))

p < 0.01

(b)

p < 0.01

= 67.0(1 - 0.9365exp(-0.0117age))

40

30

Mean DBH (cm)

- biomass of individuals, be they animals or plants, increases with age
- so does their value

6

5

4

3

2

1

Weight (kg)

we will neglect density dependence

100

Two simple (?) problems

In both cases we can neglect density dependence, but account for age structure

- Optimal rotation period in the management of forests and aquaculture: finding the optimal age at which to operate harvesting
- Fish populations with a constant (or approximately constant) recruitment

Optimal rotation period for timber production

Aquaculture

Table 4 Partial operational cost (POC) with the tambaqui biomass production in semi-dug ponds.

1. Fixed costs	Unit	5 ponds	10 ponds
Depreciation of facilities and infrastructure/pond (US\$)	Month	78.38	63.91
Electricity/maintenance and others (US\$)	Month	370.40	370.40
Labor and labor charges (70% MOD) (US\$) <u>1</u>	Month	795.01	1,192.52
2. Variable costs			
Fingerlings (US\$)	thousand	23.74	23.74
Raw protein feed 28% (US\$)	US\$/kg	0.427	0.427
Sole weight consumption CAA2 =1:1	US\$	8,204.15	16,408.31
Mix consumption mix-2 CAA = 1.2:1	US\$	9,024.57	18,049.14
Mix consumption mix-3 CAA = 1.6:1	US\$	9,844.98	19,689.97

¹MOD: Labor with wage (Brazil = US 233.83) with charges (70%) being one caretaker for five ponds; and one employee and one caretaker for 10 ponds.

²CAA: Apparent food conversion. (Exchange: US\$1.00 = R\$ 3.72, Brazil on January 15, 2019).

Age and size structure in fish populations

•Estimated growth parameters from FISAT: •Asymptotic length $(L\infty) = 26.87$ $\cdot K = 0.78$ $\bullet T_{0=0}$ 35 30 Mean length (cm) 15 10 10 10 Series1 -Log. (Series 1) 10 5 0 0 6 Mean age (yrs) Fig. 3. Growth curve for plaice

Fig 1 Pleuronectes platessa

Constant recruitment populations

- Recruitment is the first age class that is technically liable to capture (although fishing gear can be regulated so that it is not actually caught)
- In some populations it is independent of the parental stock
 - Recruitment is due to migration of a small fraction of juveniles to harvesting area. Reproduction takes place elsewhere (e.g. eels)
 - Strong density dependent mortality of juveniles in high fertility species (e.g. plaice).
 Remember Beverton-Holt model

Increasing fertility

Valli di Comacchio and the eels

Lavoriero

Management of age-structured fish populations in the open sea

- Analytical models aim at providing a detailed description of the population being exploited
- Age structure and body size at various ages are considered
- Simplest analytical model: constant recruitment fish populations (Beverton & Holt, 1957)

Optimal rotation period for timber production

Costs and returns

V(T) = commercial value of the stand at age T c(T) = cumulated planting and maintenance costs c_A = clear-cutting cost $\Pi_{\text{tot}} = V(T) - c(T) - c_A$ = profit

The problem of discounting

The flow of net revenues

The problem of discounting

No discounting

Optimal period T_o which maximizes Π_{ave} satisfies

Average profit = marginal profit

Interest – discount rates

i = annual interest (adjusted for inflation)

Suppose a present return *PP* is invested at interest *i*

After *n* years the future return *FP* will be

 $FP = PP(1+i)^n$

Thus the present value of a future return is

 $PP = FP(1+i)^{-n}$

For a sequence P_0 , P_1 , ..., P_k ... of profits obtained in years 0, 1,..., k,...

 $PP = \sum_{j=0}^{\infty} P_j (1+i)^{-j} = \sum_{j=0}^{\infty} P_j \exp(-\delta j)$ with $\delta = \log(1+i)$. For a continuous flow P(t) of profits we have

$$PP = \int_0^{\infty} P(t) \exp(-\delta t) dt$$

Faustmann's formula

$$\Pi = \operatorname{profit} = V(T) - c_A$$

Present value of a profit obtained after T years $V_P = \exp(-\delta T)(V(T) - c_A)$

Present value of a flow of profits every T years

$$V_{p} = \sum_{k=1}^{\infty} \exp(-k\delta T)(V(T) - c_{A}) = \frac{V(T) - c_{A}}{\exp(\delta T) - 1}$$

By deriving one obtains

$$\frac{V'(T)}{V(T) - c_A} = \frac{\delta}{1 - \exp(-\delta T)}$$

Faustmann's formula

The influence of discounting

$$\frac{V'(T)}{V(T) - c_A} = \frac{\delta}{1 - \exp(-\delta T)}$$

Let the discount rate $\delta \rightarrow 0$, then

$$\lim_{\delta \to 0} \frac{\delta}{1 - \exp(-\delta T)} = \frac{1}{T} \longrightarrow$$

$$V'(T) = \frac{V(T) - c_A}{T}$$
Average profit = marginal profit

Faustmann's formula

Let the discount rate $\delta \rightarrow \infty$, then

$$\lim_{\delta \to \infty} \frac{\delta}{1 - \exp(-\delta T)} = \infty \quad \rightarrow \quad V(T) - c_A = 0$$

Douglas fir

Age (vears)	Net stumpage value (\$)	Average
30	0	0
40	43	1.08
50	143	2.86
60	303	5.05
70	497	7.1
80	650	8.12
90	805	8.94
100	913	9.13
110	1000	9.09
120	1075	8.93

Annual interest rate <i>i</i> (%)	Optimal rotation period (years)	Annual discounted profit (\$/yr)
0	100	9.1
3	70	7.1
5	63	5.6
7	56	4.2
10	49	2.8
15	43	1.7
20	40	1.2

The fin whale (Balaenoptera physalus)

Logistic model with K = 400,000 r = 0.08 yr⁻¹

Optimization of net monetary benefit

Discount rate δ (% year-1)	Optimal population x*	
0	220000	
1	200000	
3	163000	
5	133000	
10	86000	
15	67000	
20	59000	
+∞	40000	

Current population estimate = 47,300