
The importance of age structure

1

• biomass of individuals, be 
they animals or plants, 
increases with age

• so does their value
• we will neglect density 

dependence

Japanese cedar

Rainbow trout



Two simple (?) problems
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In both cases we can neglect density 
dependence, but account for age structure
• Optimal rotation period in the 

management of forests and aquaculture: 
finding the optimal age at which to 
operate harvesting

• Fish populations with a constant (or 
approximately constant) recruitment



Optimal rotation period for timber production

0

5

10

15

20

0 10 20 30 40 50 60 70To
ta

l p
ro

du
ct

io
n 

 (c
ub

ic
 fe

et
 x

 1
03

)

Age (years)

Pinus Radiata

0

500

1000

1500

0 20 40 60 80 100 120 140

Co
m

m
er

ci
al

 v
al

ue
($

)

Age (years)

Abete di Douglas
Douglas fir

3

Chestnut (Castanea 
sativa)

Monterey pine

Pseudotsuga menziesii
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Aquaculture
Tambaqui (Colossoma macropomum)



5

Age and size structure in fish 
populations
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Constant recruitment populations
• Recruitment is the first age class that is 

technically liable to capture (although 
fishing gear can be regulated so that it is 
not actually caught)

• In some populations it is independent of 
the parental stock
– Recruitment is due to migration of a small 

fraction of juveniles to harvesting area. 
Reproduction takes place elsewhere (e.g. 
eels)

– Strong density dependent mortality of 
juveniles in high fertility species (e.g. plaice). 
Remember Beverton-Holt model 

Increasing 
fertility



Valli di 
Comacchio

and the eels
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Lavoriero 
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Management of age-structured fish 
populations in the open sea

• Analytical models aim at providing a detailed 
description of the population being exploited

• Age structure and body size at various ages are 
considered

• Simplest analytical model: constant recruitment 
fish populations (Beverton & Holt, 1957)



Optimal rotation period for timber production
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Chestnut (Castanea 
sativa)

Monterey pine

Pseudotsuga menziesii



Costs and returns
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Cumulated costs

Returns

The problem of discounting

V(T) = commercial value of the stand at age T
c(T) = cumulated planting and maintenance costs
cA = clear-cutting cost
𝛱tot = V(T) - c(T) - cA = profit



The flow of net revenues
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V(50) V(50) V(50) V(50)

The problem of discounting



No discounting
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V(T) = commercial value of the stand
c(T) = cumulated planting and 
maintenance costs
cA = clear-cutting cost
𝛱tot = V(T) - c(T) - cA = profit

𝛱ave = (V(T) - c(T) - cA )/T = average 
profit

Optimal period To which maximizes 𝛱ave satisfies

Average profit = marginal profit   

𝑑Π"#"
𝑑𝑇

= Π$%&



Interest – discount rates
i = annual interest (adjusted for inflation)

Suppose a present return PP is invested at interest i

After n years the future return FP will be

FP = PP(1+i)n

Thus the present value of a future return is 
PP = FP(1+i)-n

For a sequence P0, P1, …Pk … of profits obtained in years 0, 1,…k,…

with δ = log(1+i). For a continuous flow P(t) of profits we have  

PP = Pj (1+ i)
− j =

j=0

∞

∑ Pj exp(−δ j)
j=0

∞

∑

  PP = P(t ) exp(−δ t ) dt
0

∞

∫



Faustmann’s formula
Π=profit =V (T)− cA
Present	value	of	a	profit	obtained	after	T 	years
VP = exp(−δT)(V (T)− cA)

Present	value	of	a	flow	of	profits	every		T 	years

VP = exp(−kδT)(V (T)− cA)
k=1

∞

∑ =
V (T)− cA
exp(δT)−1

By	deriving	one	obtains
V '(T)

V (T)− cA
= δ
1−exp(−δT)

Faustmann’s formula



The influence of discounting

Present	value	of	a	flow	of	profits	every		T 	years

VP = exp(−kδT)(V (T)− cA)
k=1

∞

∑ =
V (T)− cA
exp(δT)−1

By	deriving	one	obtains
V '(T)

V (T)− cA
= δ
1−exp(−δT)

Faustmann’s formula

Let the discount rate δ à 0, then

lim
δ→0

δ
1−exp(−δT) =

1
T

→ V '(T)=
V (T)− cA

T
Average profit = marginal profit   

Let the discount rate δ à ∞, then

lim
δ→∞

δ
1−exp(−δT) =∞ → V (T)− cA =0

Rent dissipation
Bionomic equilibrium



Annual interest rate i (%) Optimal rotation period (years) Annual discounted profit ($/yr)
0 100 9.1
3 70 7.1
5 63 5.6
7 56 4.2
10 49 2.8
15 43 1.7
20 40 1.2

Age 
(years) Net stumpage value ($)

Average 
profit ($/yr)

30 0 0
40 43 1.08
50 143 2.86
60 303 5.05
70 497 7.1
80 650 8.12
90 805 8.94
100 913 9.13
110 1000 9.09
120 1075 8.93

Douglas fir
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The fin whale (Balaenoptera physalus)

Optimization of net monetary benefit

Discount rate δ (% year-1) Optimal population x*

0 220000
1 200000
3 163000
5 133000
10 86000
15 67000
20 59000
+∞ 40000

Logistic model with K = 400,000   r = 0.08 yr-1

Current population 
estimate = 47,300


