
Problems on the Management of Renewable Resource 

Harvesting 

Solutions (detailed in some cases, just the results in other cases) 
 

 
 

 
Solution 

Let x be the number of pheasants. From the graph it is clear that the rate of increase dx/dt is a 

parabolic function of x. Therefore, the population dynamics is well described by a logistic model 
𝑑𝑥

𝑑𝑡
= 𝑟𝑥 (1 −

𝑥

𝐾
) 

The value of K can be found by estimating the number (different from zero) of pheasants where 

dx/dt = 0, namely K = 1850. Also, the per capita rate of increase r is the slope of the tangent to the 

parabola in x =0, that is r = 380/250 = 1.52 year-1. 

The dynamics of hunted pheasants can be thus described by the Schaefer model  



𝑑𝑥

𝑑𝑡
= 𝑟𝑥 (1 −

𝑥

𝐾
) − 𝑞𝐸𝑥 = 𝑟𝑥 (1 −

𝑥

𝐾
) − 𝑞

𝐿

2
𝑥 

where E is the effort, which is equal to L/2. The stable equilibrium xeq corresponding to the number 

L of licenses is thus  

𝑥𝑒𝑞 = 𝐾 (1 −
𝑞

𝑟

𝐿

2
) 

and the sustainable yield is 

𝑌 = 𝑞𝐾
𝐿

2
(1 −

𝑞

𝑟

𝐿

2
) 

The MSY can be found by imposing dY/dL = 0, that is 

𝑞
𝐾

2
(1 − 𝑞

𝐿

𝑟
) = 0 → 𝐿 =

𝑟

𝑞
 

From which LMSY = 1.52/0.01 = 152 licenses. 

The number of licenses Lext that would bring the population to extinction is easily found by setting 

xeq = 0, thus finding Lext = 2r/q = 304 licenses corresponding to an effort of 152 operating hunters. 

 

 

 

 
 

Solution 

Let P the parental stock and F(P) the stock-recruitment relationship shown in the graph. The 

solution can be found graphically by remembering that the stock at equilibrium Peq providing the 

MSY is the one such that Y = F(P) – P is maximum. This corresponds to finding where dF/dP = 1. 

Graphically this means finding the tangent to the stock-recruitment curve that is parallel to the 45° 

degrees straight line. 

 



 
Therefore PMSY = 0.8 million salmon and MSY = F(PMSY) – PMSY = 2.3 million – 0.8 million = 1.5 

million salmon. 

 

 

 

 
 

 
 

 

MSY 



 

Solution 

Let F(B) be the stock-recruitment function, that is 𝐹(𝐵) =
𝜆𝐵

1+𝛼𝐵
. As in the previous exercise the 

biomass BMSY that corresponds to the MSY is the one such that dF/dB = 1, that is 
𝜆

(1 + 𝛼𝐵)2
= 1 

from which we get 𝐵𝑀𝑆𝑌 =
√𝜆−1

𝛼
. On the other hand, the dynamics of the exploited stocks is given 

by the equation 

𝐵𝑘+1 =
𝜆𝐵𝑘

1 + 𝛼𝐵𝑘
𝑒𝑥𝑝(−𝑞𝐸𝑘) 

Therefore, at the equilibrium corresponding to MSY we obtain  

𝐵𝑀𝑆𝑌 =
𝜆𝐵𝑀𝑆𝑌

1 + 𝛼𝐵𝑀𝑆𝑌
𝑒𝑥𝑝(−𝑞𝐸𝑀𝑆𝑌) 

from which it is possible to derive EMSY as a function of BMSY, namely  

𝐸𝑀𝑆𝑌 =
1

𝑞
𝑙𝑛 (

𝜆𝐵𝑀𝑆𝑌
1 + 𝛼𝐵𝑀𝑆𝑌

) 

Finally, the MSY can be derived from BMSY as the difference between the recruitment and the stock, 

that is MSY = 
𝜆𝐵𝑀𝑆𝑌

1+𝛼𝐵𝑀𝑆𝑌
− 𝐵𝑀𝑆𝑌. 

Substituting the numerical values for the two prawns we obtain 

(a) MSYesculentus = 369.36 tonnes       MSYsemisulcatus = 551.53 tonnes 

(b) EMSYesc = 783.34 boat-days              EMSYsemi = 1100.15 boat-days 

(c) BMSYesc = 1394.27 tonnes              BMSYsemi = 1174.23 tonnes 

 



 

 
 

Solution 

Solution very similar to previous exercise. Here are the results:  

The optimal constant escapement is 𝐵𝑀𝑆𝑌 =
𝑙𝑛(𝜆𝐴)

𝜆
 =69,895 tonnes in each generation.  

The corresponding MSY is 49,682 tonnes. 

The fraction of the recruitment harvested at MSY is uMSY = 0.415.  

The fishing season is 𝑇𝑀𝑆𝑌 = 0.179 years = 2.15 months. 



 

 

 

 
 

Solution 

The equation for the dynamics of Nk is 

𝑁𝑘+1 =
𝜆𝑁𝑘

1 + 𝛼𝑁𝑘
+ 𝑠𝑁𝑘 = 𝐹(𝑁𝑘) 

As in the previous exercises one can easily find the optimal escapement providing the MSY  

𝑁𝑀𝑆𝑌 =
1

𝛼
(√

𝜆

1−𝑠
− 1) = 2.36 tonnes. 

 



 
 

Solution 

 

The solution is found graphically by implementing the policy on the figure below: the black curve 

shows the modification of the stock recruitment function F(P) to take into account the dynamics 

with harvesting, namely 

 

𝑃𝑘+1 = {
𝐹(𝑃𝑘)        if 𝑅𝑘 ≤ 35

𝐹(𝑃𝑘) − 0.5(𝐹(𝑃𝑘) − 35)   if 𝑅𝑘 > 35
 

 

From the figure below one can see that the intersection of the modified curve with the 45° line 

provides the equilibrium of 58 bears, which is well above the minimal requirement of a recruitment 

of 35 bears. This equilibrium is stable as can be easily determined by plotting the corresponding 

staircase diagram. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Solution 

35 

45° 



Introduce the variables x = krill biomass, y = whale biomass. The corresponding Lotka-Volterra 

model with exploitation of the krill biomass is as follows 

 
𝑑𝑥

𝑑𝑡
= 𝑟𝑥(1 − 𝑥 𝐾⁄ ) − 𝑞𝐸𝑥 − 𝑝𝑥𝑦 

𝑑𝑦

𝑑𝑡
= 𝑒𝑝𝑥𝑦 − 𝑚𝑦 

where r is the intrinsic rate of increase and K the carrying capacity of the krill, q is the catchability 

coefficient, p the predation rate coefficient, e the krill-to-whale metabolic efficiency, m the whale 

death rate. 

The stable equilibria of the system can be determined by using the isocline method. We graph the 

loci where dx/dt = 0 (prey isocline, red) and dy/dt = 0 (predator isocline, green). 

 

Prey isocline  

𝑥[𝑟(1 − 𝑥/𝐾) −  𝑞𝐸 −  𝑝𝑦]  =  0 

x = 0 trivial isocline 

𝑟 (1 −
𝑥

𝐾
) −  𝑞𝐸 −  𝑝𝑦 = 0 nontrivial isocline from which 

𝑦 = (𝑟 −  𝑞𝐸)/𝑝 −  𝑟𝑥/𝑝𝐾 = 0  

 

Predator isocline  

epxy – my = 0 

y = 0 trivial isocline 

x = m/(ep) non trivial isocline 

 

We graph the loci where dx/dt = 0 (prey isocline, red) and dy/dt = 0 (predator isocline, green). There 

are two possible situations:  

1) K (1– qE/r) > m/(ep), that is the effort E is lower than 
𝑟

𝑞
(1 −

𝑚

𝑒𝑝𝐾
). In this case the two nontrivial 

isoclines intersect and the corresponding equilibrium [xeq = m/(ep), yeq = 
𝑟

𝑝
(1 −

𝑚

𝑒𝑝𝐾
) − 𝑞𝐸] is stable 

(see figure below which shows the possible trajectory directions, the stable equilibrium in blue and 

the two other unstable equilibria in red) 

 
 

 

2) K (1– qE/r) > m/(ep), that is the effort E is larger than 
𝑟

𝑞
(1 −

𝑚

𝑒𝑝𝐾
). In this case the two nontrivial 

isoclines do not intersect, while the nontrivial predator isocline intersects the trivial prey isocline 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x 

y 

(r – qE)/p 

m/(ep) K (1– qE/r) 



and the stable equilibrium is the one with whale biomass yeq = 0 (blue dot) and the krill biomass xeq 

= K (1– qE/r). 

 
 

Therefore, we can conclude that increasing the fishing effort on krill leads to the extinction of the 

whales. As for the sustainable catch Y of krill as a function of the effort E we obtain 

 

𝑌 = 𝑞𝐸𝑥𝑒𝑞 =

{
 
 

 
 

𝑞𝑚

𝑒𝑝
𝐸   if 𝐸 <

𝑟

𝑞
(1 −

𝑚

𝑒𝑝𝐾
)

𝑞𝐾𝐸 (1 −
𝑞𝐸

𝑟
)  if 

𝑟

𝑞
(1 −

𝑚

𝑒𝑝𝐾
) ≤ 𝐸 < 𝑟/𝑞

0   if 𝐸 > 𝑟/𝑞

 

 

 

 

 

 

locus where dx/dt=0    Prey isocline 

locus where dy/dt=0    Predator isocline 

 

Prey isocline x*[r* (1-x/K) – q*E – p*y] = 0 

 

x = 0  trivial isocline 

r* (1-x/K) – q*E – p*y=0ày=( r* (1-x/K) – q*E)/p 

y=(r-q*E)/p – r*x/(p*K) 

Predator isocline e* p*y*x – m*y=0 

 

y = 0  trivial isocline 

e*p*x-m=0àx=m/(e*p) 

 

 

 

 

 

 

 

 

m/(ep) 
K (1– qE/r) 

(r – qE)/p 

x 

y 



 

Solution 

As in the previous exercise, use isoclines dG/dt = 0 and dD/dt = 0.  

The sustainable yield Y as a function of u is 

𝑌 = {𝑢 (
10

0.1 + 𝑢
− 50)   if 𝑢 < 0.1

0  if 𝑢 ≥ 0.1

 

The value of u corresponding to the MSY is 

uMSY = 0.041 year-1 and MSY = 0.858 tonne year-1. 

 

 

 

 



 
 

Solution 

The dynamics of Posidonia biomass and fish stock biomass is provided by the equations 
𝑑𝑃

𝑑𝑡
= 𝑤 −𝑚𝑃 − 𝑧𝐸𝑃 

𝑑𝐵

𝑑𝑡
= 𝑟𝐵 (1 −

𝐵

𝑘𝑃
) − 𝑞𝐸𝐵 

By doing the appropriate calculations one finds the effort EMSY corresponding to MSY, namely  

EMSY = 4.69 ~ 5 operating vessels.  

Considering an effort of 5 operating vessels, one obtains BMSY = 0.011 kg m2, PMSY = 0.44 kg m2, 

MSY = 0.00055 kg m2 year-1. 

 

 

 



 
 

Solution 

It is well-known that the biomass NB at the bionomic equilibrium is equal to c/(pq) where c is the 

cost of one unit of effort and p the selling price of one unit of biomass. Therefore NB = 5,128 BWU, 

very close to near extinction. 

The Schaefer model is  
𝑑𝑁

𝑑𝑡
= 𝑟𝑁 (1 −

𝑁

𝐾
) − 𝑞𝐸𝑁 

and thus the effort EB at the bionomic equilibrium is EB = 
𝑟

𝑞
(1 −

𝑁𝐵

𝐾
) = 3,797 hunting days. The 

corresponding yield is YB = q EB NB = 253 BWU year-1. 

 

 

 



 

 
 

 

Solution 

The calculation of the bionomic equilibrium follows the same steps of the previous exercise. 

Therefore, we have 

NB = 1,166.67 hake tonnes, EB = 65,166.67 fuel tonnes, YB = 1,520.56 hake tonnes year-1. 

To find the effort that maximizes the sustainable profit P(E) = pY – cE, we must first consider that 

in the logistic model the biomass at equilibrium corresponding to a given effort is 

𝑁𝑒𝑞 = 𝐾 (1 −
𝑞

𝑟
𝐸) 

and therefore  

𝑃(𝐸) = 𝑝𝑞𝐾𝐸 (1 −
𝑞

𝑟
𝐸) − 𝑐𝐸 

Then the effort that maximizes the sustainable profit is given by  

Eopt = 32,583.33 fuel tonnes.  

The corresponding stock is Nopt = 3,083.33 tonnes, catch is Yopt = 2,009.31 hake tonnes year-1, profit 

Popt = 7,494,167 € year-1. 

 

 

 

 

 



 

 
 

 

Solution 

c/p = 17,500 kg (No. of skates)-1 year-1.  

The maximizing effort is Eopt = 0.5
(𝑞𝐾−

𝑐

𝑝
)

𝑞2𝐾
𝑟⁄

  278 skates. The corresponding yield is Yopt = 

13.608106 kg year-1. 

 

 



 

 
 

 

Solution 

The model describing the dynamics of the whale stock is 

𝑑𝑁

𝑑𝑡
= 𝑟𝑁 (1 −

𝑁

𝐾
)
𝑎

− 𝑞𝐸𝑁 

and therefore, given an effort E, the corresponding stock at equilibrium is 



𝑁𝑒𝑞 = 𝐾 (1 − (
𝑞

𝑟
𝐸)

1
𝑎⁄

) 

The sustainable profit is thus given by 

𝑃(𝐸) = 𝑝𝑞𝐾𝐸 (1 − (
𝑞

𝑟
𝐸)

1
𝑎⁄

)− 𝑐𝐸 

and the optimal effort is found by setting dP/dE = 𝑝𝑞𝐾 −
1

𝑎
𝑝𝑞𝐾 (

𝑞

𝑟
)
1
𝑎⁄

𝐸
1
𝑎⁄ − 𝑐 = 0, namely 

𝐸𝑜𝑝𝑡 =
[𝑎(𝑝𝑞𝐾 − 𝑐)]𝑎

(𝑝𝑞𝐾)𝑎(
𝑞
𝑟⁄ )

= 3,485 hunting days 

The corresponding number of whales at equilibrium is Nopt = 343,900, the yield is Yopt = 15,581 

whales year-1, and the profit is Popt = 609.293 million euros. 

The tax  can be found by setting (p - ) Yopt - cEopt = 0. The resulting tax would be  = € 39,105 per 

whale. 

 

 

 
 

Solution 

The total profit to the exploiters would be  

P(E) = pY – cE -  (pY – cE) = (1 - )(pY – cE). 

Easy to see that such a tax would be totally ineffective. 

 

 

 
 



Solution 

With no tax applied we would have the bionomic equilibrium with NB = c/(pq) and EB = 
𝑟

𝑞
(1 −

𝑐

𝑝𝑞𝐾
). The yield would be YB = 

𝑐𝑟

𝑝𝑞
(1 −

𝑐

𝑝𝑞𝐾
) and the situation is the one shown in the graph 

below 

 

 
 

The proposed regulatory taxation depends on two parameters: Y0 and max. First assume that Y0 < YB, 

i.e. Y0 < 
𝑐𝑟

𝑝𝑞
(1 −

𝑐

𝑝𝑞𝐾
). In this case, as shown in the graph below, the tax is completely ineffective 

because the resulting equilibrium coincides with the unregulated bionomic equilibrium, whatever 

the value of max.  

 

 
 

If, instead, Y0 > YB, the resulting regulated bionomic equilibrium is given by the equation  

𝑝𝑌 − 𝜏𝑚𝑎𝑥(𝑌 − 𝑌0) − 𝑐𝐸 = 0 

and the result is depicted in the graph below. The new bionomic effort is below the unregulated 

bionomic effort and the higher max the more effective the tax. 

 

 
 



 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Solution 

The dynamics of the beaver population is provided by the equation  



𝑑𝑁

𝑑𝑡
= 𝑟𝑁 (1 −

𝑁

𝐾
) −𝑚𝑁 

and the nontrivial equilibrium is Neq = K(1-m/r). Therefore the damage D at equilibrium is thus 

𝐷 = 𝛼𝐾 (1 −
𝑚

𝑟
) +

𝛽

𝐾

𝑚

(1−
𝑚
𝑟 )

 

where 𝛼 = $45 and 𝛽 = 2.5. We can then find the value of m that minimizes the damage by setting 

dD/dm = 0, that is 

−
𝛼𝐾

𝑟
+
𝛽

𝐾

1

(1 −
𝑚
𝑟
)
2 = 0 

From which mopt = 𝑟 (1 − √
𝛽𝑟

𝛼
𝐾) = 0.26 year-1. 

 

 

 

 
 

 

Solution 

The optimal rotation period is where the marginal profit equals the average profit. From the 

graphical viewpoint it corresponds to finding the tangent to the profit curve that goes through the 

origin (see the graph below).  

 

 



 

 
Therefore, the optimal rotation period for pulpwood is Tp = 58 years, for sawlogs Ts = 85 years. 

However, P(Tp)/ Tp < P(Ts)/ Ts and therefore it is more convenient to produce sawlogs. 

 

 

 

 



 
 

Solution 

The profit P(T) obtainable by harvesting at the age T is 

P(T) = pB(T) – cA – cMT = p(T - T2 - ) – cA – cMT 

from which we derive that the optimal rotation period is 

 𝑇𝑜𝑝𝑡 = √
𝑝𝛾+𝑐𝐴

𝑝𝛽
= 27.74 ≅ 28 years. 

 

 

 
 

 

Solution 

The profit P(T) obtainable by harvesting at the age T is 

P(T) = S0 (pw(T) – cA – cMT) = S0 (pT/(1+T) – cA ) – cMT 

from which we derive the optimal  

 𝑇𝑜𝑝𝑡 =
𝛽𝑐𝐴+√𝛽𝑐𝐴𝑝𝛼

 (𝑝 −  𝑐𝐴)
 = 104 days. 



The corresponding average profit is 7.37 € day-1 and the total profit from each cage at the end of the 

rotation period is P(Topt) = €767.38 

 

 

 
 

Solution 

The biomass Bi() of the fish increases with the fish age  depending on the presence of seals (i = 0, 

S) according to the equation  

 𝐵𝑖(𝜏) = 𝑅𝑤𝑖(𝜏)𝑝(𝜏) = 𝑅𝑤𝑚𝑎𝑥(1 − exp (−𝑘𝜏)) exp(−𝜇𝑖𝜏). 
where R is the yearly recruitment. Since the harvesting cost is negligible and the recruitment is 

continuous, the corresponding sustained yield is obtained by maximizing the biomass and applying 

a very large (theoretically infinite) effort corresponding to the optimal age. 

The age max,i where Bi() is largest is derived by setting dBi()/d = 0. Thus, we obtain max,i = 
1

𝑘
ln (1 +

𝑘

𝜇𝑖
), that is max,0 = 6.93 years and max,S = 4.05 years.  

Correspondingly, the harvested biomass is  

𝐵𝑖(𝜏𝑚𝑎𝑥,𝑖) = 𝑅𝑤𝑚𝑎𝑥(1 − exp (−𝑘𝜏𝑚𝑎𝑥,𝑖)) exp(−𝜇𝑖𝜏𝑚𝑎𝑥,𝑖).  

The percent variation of yield is thus given by  

 1 −
𝑅𝑤𝑚𝑎𝑥(1−exp (−𝑘𝜏𝑚𝑎𝑥,𝑆)) exp(−𝜇𝑖𝜏𝑚𝑎𝑥,𝑆) 

𝑅𝑤𝑚𝑎𝑥(1−exp (−𝑘𝜏𝑚𝑎𝑥,0)) exp(−𝜇𝑖𝜏𝑚𝑎𝑥,0)
 =0.41. 



In conclusion, the complaints of fishermen are not unjustified because this fish-stock yield with 

seals decreases by 41%. 

 

 

 

 

 
 

Solution 

Let max,i be the optimal age for policy i (i = 1, 2). 

Following a procedure similar to that of the previous exercise, we obtain max,i = 
1

𝑘𝑖
ln (1 +

𝑘𝑖

𝜇
), that 

is max,1 = 5.01 years and max,2 = 6.11 years. Correspondingly, the profits are P1 = €465,515 year-1 

and P2 = €501,460 year-1. 

In conclusion, it is more convenient to utilize the poorer food and use a fishing gear that selects fish 

6 years-old and older. 

 

 

 

 

 

 

 



 

 
 

 

Solution 

The solution is very similar to those of the previous exercises. The optimal age is 𝑥𝑜𝑝𝑡 =
1

𝑘
ln (1 +

3𝑘

𝜇
) = 6.39 years. The corresponding harvested biomass is 607.78 kg and the profit is 

€36,467. 

 

 

 

 


