Problems on Parasite and Disease Ecology
Solutions (detailed in some cases, just the results in other cases)

Problem PD1

Rabies 1s a serious microparasitic disease due to the transmission of a virus between
hosts. One of the most important animal hosts is the red fox (Vulpes vulpes). Write
down an 81 model for this mammal assuming that demography is logistic, transmis-
sion 1s density-dependent and no infected animal can recover from the disease.

Use the following parameters:

e birth rate v = 0.6 year!;

e natural death rate u = 0.2 year ';

e carrying capacity K = 5 foxes km~%;

e disease-related death rate @ = 5 year—!;

e basic reproduction number of rabies Ry = 3.

Compute:

(a) the transmission coefficient £ of rabies in foxes;
(b) the endemic equilibrium densities of susceptible and infected foxes;
(c) the equilibrium prevalence of the disease.
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Problem PD2

The gonorrhoea of the fantasy population of striped kangaroos is a bacterial disease
that strikes these kangaroos as a consequence of sexual contacts. The contact rate
increases with the number of kangaroos and then saturates, because the maximum
number of sexual contacts per unit time is obviously finite. The disease does not
confer immunity. Describe the gonorrhoea dynamics in Marsupiumland by an S/
model with saturating transmission and characterized by

e birth rate = 0.2 year—!;

e natural death rate = 0.05 year '
e carrying capacity = 50 kangaroos km—2;
e disease-related death rate = 0.01 year—!;
e infection rate = 81 /(5 + N)., with # = 3 year ! and § = 10 kangaroos km 2 (with
N=§+1)
1

s recovery rate = 2year .
Based on these data:

(1) write down the model for the gonorrhoea dynamics;
(11) compute the basic reproduction number of the disease;
(111) determine whether gonorrhoea can permanently establish within Marsupium-
land kangaroos; and
(1v) compute the prevalence at the endemic equilibrium.

Solution
(1)
5 = r8(1-S1)— pfiey +o
.. _ BK _
(i) Ry = GOty 1.214

(111) Since R, >1 the disease can become endemic

(iv) The solution can be numerically found by changing variables from S and / to total numbers N =
S + I and prevalence of infected x = I/N. The corresponding isoclines are given by
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The solution is found at the intersection of the two isoclines
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Prevalence at equilibrium = 0.164

Problem PD3

In many microparasitic diseases a fraction of infected and infectious individuals 1s
not symptomatic and thus can reproduce. For instance, cholera and amoebiasis are
diseases with this peculiarity. Analyse the effect of asymptomatic individuals in an
ST system without immunity, with density-dependent transmission and Malthusian

demographics. Assume that:

» the birth rate of susceptibles and asymptomatics is v = 0.7 year—
e the natural death rate is = 0.2 year!;
o the disease-related death rate 1s o = 0.01 },rear'l:,

60

¢ 5 and [ are measured as No. of individuals km—;

e the transmission coefficient from infected to susceptible is g = 2year—! (No. of

individuals km—2)~!;

¢ the average recovery time from the disease is 15 days;
e a fraction o of infected is symptomatic and cannot reproduce.

Write down the §1 model equations and determine how the model equilibria vary
for increasing o . Find out the values of & for which the disease can demographically

regulate the Malthusian population.

Solution

dt
d

dt

The condition for regulation is ¢ > :;—Z =0.704.

S=v(5+(1—a)1)—u5—ﬁl$+yl

1
= RIS — (u+y)I — acl



Problem PD4

Selective culling 1s a method that can be employed to try to control wildlife diseases
(e.g. rabies). Perform a simple analysis of the efficacy of this control method by using
an S model without immune response and with density-dependent transmission.
Assume the following values for the parameters

e birth rate of susceptibles v = 1.5year '

e natural death rate u = 0.5 year—!;

e disease-related death rate @ = 1 year—!;

e 5 and I are measured as No. of individuals km™%;

e carrying capacity K = 13 individuals km™?;

e transmission coefficient from infected to susceptible 8 = 1 year—! (No. of individ-
uals km—2)-!:

e average recovery time from the disease = 2 months.

Find out whether the disease can establish in the population. If it can, analyse whether
culling can eradicate the disease. Assume that hunters can distinguish and kill the
infected animals only, inflicting a death rate & (year ). How big should & be to
permanently eliminate the disease from the wildlife population?

Solution

The corresponding model is

@ _ S<1 S+J) IS +yl
dr | K BIS +v
dl

— =BIS — h)I
T B (u+a+y+h)
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Set h=0. The basic reproducion number is R, = ety =1.733. Thus the disease can establish.

If 4 > 0 the basic reproduction number is
BK
Ry=———
Uu+a+y+h
and must be smaller than 1 to eradicate the disease. Therefore
h> BK—(u+a+y)=5.5year



Problem PD5

Classical swine fever (CSF) is a viral disease with severe economic consequences
for wild boars and domestic pigs. Domestic pigs as well as wild boars are highly
susceptible to CSF infection. There are well documented reports that CSF may spill
over from wild boar to domestic pigs. Transmission of the infection is by direct
contact and the transmission is density-dependent.

Analyze the dynamics of classical swine fever in wild boars (Sus scrofa) using
the information provided by Hone et al. (1992) who studied the disease in a Pakistan
boar population. The demography is logistic with

e carrying capacity K = 10.4 ind. km~2;

e instantaneous intrinsic rate of demographic increase r = 0.09 year—!;

e natural mortality rate u = 0.6 year~!.

The fever is very virulent with a quite high mortality rate due to the disease, namely
o = 0.2 day~!. The recovery period for the few animals that survive is 15 days
and the immunity is permanent. The estimated coefficient of disease transmission is
B = 0.044 (ind. km=2)~! day~'. Assume that the number of recovered boars can be

approximately set to zero because mortality due to disease is very high.
Then

(a) Write a simple ST model for the disease;
(b) Calculate the basic reproduction number of CSE.

One of the possible methods for curbing the disease is by culling. Assume that
both susceptible and infected boars are killed at a rate ¢ (year—'). Calculate then the
value of ¢ above which the disease cannot become endemic.

Solution

(a) The model with culling is

dS_ S(l S+1) Is s
ac K B ¢
dl

—=BIS—(u+a+y+c)l
dt
(b) with ¢ =0, Ry = 1.71 and the disease can become endemic.

If ¢ > 0 the culling rate ¢ must be > 0.037 year™.



Problem PD6

Vaccination is the most important means for preventing disease epidemics. Analyse
its efficacy by considering a simple case of a city whose demography is described
by a constant flow w of births and immigration and a mortality rate p. Consider a
microparasitic disease with density-dependent transmission that provides full immu-
nity to people that recover. The population parameters are

e w = 15000 people year';
¢ u = death rate of susceptible people = 0.015 year';
¢ « = additional mortality rate due to the disease = 0.005 year—';

e j = coefficient of disease transmission = 0.0001 (number of people)~! year—!;
e recovery time = 0.5 months.

Assume that susceptible individuals are vaccinated at a rate V, where V is
expressed as year—'. Then

(a) Write down the S§I model that governs the epidemiological dynamics;

(b) Calculate the basic reproduction number with no vaccination;

(c) Calculate how big the vaccination rate V' should be in order to avoid that the
disease establishes in the population;

(d) Calculate the number of susceptible people at equilibrium in the case of suc-
cessful vaccination.

Solution

(a) Let p be the recovery rate = 1/0.5 month! = 24 year'!. The model is

ds _ S—pBIS—VS
ar_ IS—(u+a+p)l
prinl p+a+p

(b) If V=0, then the equilibrium population size of susceptibles is w/y = 1 million. The basic
reproduction number is
Ry = % = 4.16. The disease is obviously endemic without vaccination.

(c) With vaccination the equilibrium population size of susceptibles is S, = ,u-I-LV and the

corresponding basic reproduction number is

_Bw/@ V)
T uta+p
Thus, the vaccination is successful if Roy < 1, which implies V' > H+:+p — 1 = 0.0474 year.

(d) In case of successful vaccination S,qy = HW? < 240200.



Problem PD7

Cholera is a microparasitic disease transmitted through exposure to water contami-
nated by the bacterium Vibrio cholerae. In the standard SIB model the rate at which
one susceptible becomes infected is assumed to linearly increase with the bacterial
concentration. A more realistic assumption is that it increases and saturates with the
concentration in the following way:

infectionrate = gB/(1 + B)

where B is the normalized concentration of bacteria in the water (namely the con-
centration of bacteria divided by their carrying capacity). It is thus possible to better
analyze the dynamics of cholera in a human community in which the recruitment
of new susceptible individuals (due to either newborns or migration from nearby
communities) is a constant flow w and the susceptible individuals have a mortality
rate . For the modified ST B model assume that recovered people are permanently
immune and parameters have the following values

average life time of susceptibles: 70 years;
constant low w = 5 individuals da}f"; year™!
infection rate = B/(1 + B) with f = 1/
recovery rate p = 0.2 day!;

contamination rate & = 10~° (No.infected) ' day—';
death rate of V. cholerae § = 0.2 day—".

Based on these data, write down the modified 57 B model for the cholera dynamics.
Then, consider a population that at the endemic equilibrium is characterized by
10,000 infected individuals. For this population

(a) Compute the equilibrium prevalence of the disease;
(b) Determine the disease-related death rate «.

Solution

s BBS

(Cil; ) M,;)’BSM 1+5

at- 14p Wratel
dB = 0] — 6B

dt

(a) The prevalence is _lea _ 0385

leq+Seq

(b) The disease-related death rate = 0.2 day™'.



Problem PDS8

Zika virus is an emerging mosquito-borne virus that infects and causes disease in
humans. Although symptoms are usually mild, there is evidence that the infection
of women during a critical part of pregnancy can lead to the development of micro-
cephaly in the unborn child. The most important disease vector is the Yellow Fever
mosquito, Aedes aegypti. Caminade et al. (2017) have studied the dynamics of the
disease in relation to the climate of the countries hit by an epidemic of the virus.

They estimated the following parameters for a country with an average temperature
of 25 °C.

e a = number of bites per mosquito per unit time = 0.2 day

e m = number of female mosquitoes per human host = 50

e b = probability of transmission of infection from infectious mosquitoes to humans
per bite = 0.5

e & = mortality rates of mosquitoes = 0.19day "

e recovery time from the disease = 7 days

e ¢ =probability of transmission of infection from infectious humans to mosquitoes
per bite = 0.1

You are required to:

(a) From the above parameters derive §, the mosquito-to-human transmission rate
and v, the human-to-mosquito transmission rate.

(b) Write down a Ross model for the Zika virus describing the dynamics of the
prevalence of infected humans (/) and that of infected mosquitoes (M ).

(c) Calculate the basic reproduction number and assess whether the disease can
establish in the country. If it can, calculate the prevalence of both humans and
mosquitoes at equilibrium.

Aedes aegypti

Solution
(a) B = mab =5day!, Y = ac=0.02 day’!



(b)

dU
= BM(1-U)—yU
I BM( )=y

dM

S —wU(-M)-EM
ac wU( )-¢&

with y=1/70 = 0.0143 year’!

(©) Ry = % —3.684
The disease can establish in the country and the two prevalences can be computed by setting the
two derivatives to zero thus obtaining

“wEry M TBwTe
and ﬁnally Ueq = 0708, Meq =0.069.

o= PY—18 i = BY =8



Problem PD9

West Nile virus (WNV) is a mosquito-borne flavivirus which has caused repeated
outbreaks in humans in southern and central Europe. The main vector for WNV is the
common mosquito Culex pipiens. Although the disease can be transmitted to humans
the main virus reservoir is represented by birds. Vogels et al. (2017) have studied how
the basic reproduction number of the disease varies with the average temperature of
the country hosting mosquitoes and birds. They estimated the following parameters
for countries with an average temperature of 23 °C and 28 °C, respectively.

e a =number of bites per mosquito per unit time = 0.14 day ! at 23 °C and 0.2 day !
at 28 °C

m = number of female mosquitoes per bird host = 10

b = probability of transmission of infection from infectious mosquitoes to birds
per bite = 0.8

average lifetime of mosquitoes = 33 days at 23 °C and 25 days at 28 °C

bird recovery time from the disease = 5.5 days

¢ = probability of transmission of infection from infectious birds to mosquitoes
per bite = 0.04 at 23 °C and 0.34 at 28 °C

(A) From the above parameters derive 8, the mosquito-to-bird transmission rate and
Y, the bird-to-mosquito transmission rate for both temperatures.

(B) Write down a Ross model for WNV describing the dynamics of the prevalence
of infected birds (U) and that of infected mosquitoes (M).

Problem PD9 The common ™
mosquito, the most important Culex pipiens
vector for West Nile Virus

(C) Calculate the basic reproduction number and establish whether the disease can
establish at the two temperatures. If it can, calculate the prevalence of both birds
and mosquitoes at equilibrium.

Solution

The solution is the same as that of the previous exercise.



Temperature 23°C 28°C

B 1.12 day! 1.6 day!

v 0.056 day™! 0.068 day™!
Ro 1.14 14.96

Ueq 0.105 0.838

Meq 0.019 0.588

Problem PD10

Lyme disease, also known as Lyme borreliosis, is an infectious vector-borne disease
caused by the Borrelia spp. bacterium. It is transmitted to humans and to many other
mammals by the bites of infected ticks of the genus Ixodes spp. that leave a typical
rash on the skin of bitten people, as shown in the Figure.

However, humans are not the main hosts of Lyme disease. A growing body of
evidence implicates small mammals (e.g. mice, chipmunks, shrews) as key hosts of
the disease. Moreover, a lot of other animals (e.g. deer) can be bitten by ticks but are
not able to infect them, namely, even if they were bitten by infected ticks, they would
not infect healthy ticks with borreliosis. This kind of hosts are called incompetent
hosts and the phenomenon is termed dilution. In fact, if there are many incompetent
hosts around, many of the ticks will make their blood meal on them and will not
transmit the disease.

Study the effect of incompetent hosts by assuming the following realistic data for
the small mammals (host) and ticks (vector) system:

e mo = mean number of ticks per small mammal when there are no incompetent
hosts around = 0.15

Problem PD10 The rash due
to Lyme disease on the leg of
a person bitten by a tick of the
species Ixodes ricinus (inset)




e a = mean number of bites per tick per day = 0.4 day~"!

e b = probability of transmission from tick to small mammal = 0.9
e ¢ = probability of transmission from small mammal to tick = 0.8
e £ =tick mortality = 0.015day~!

e y =recovery rate of small mammals = 0.3 day~!

When there are D [No. individuals km~2] incompetent hosts in the environment,
then the mean number of ticks per small mammal is lower and given by

mo
m =
1+eD

with € = 0.05 (No. individuals km~%)~1.

(1) calculate the basic reproduction number of the disease without incompetent
hosts;
(i1) calculate the prevalence of ticks and hosts at equilibrium;
(ii1) calculate the density D of incompetent hosts above which Lyme disease cannot
establish in the small mammals.

Solution

Without incompetent hosts, Ry = % = 3.84, prevalence of hosts Ueg = 0.113, prevalence of

ticks Meq = 0.706. Imposing R, with incompetent hosts to be < 1, one finds D > 56.8 No. of
hosts km2.

Problem PDI11

Fish populations can harbour several species of macroparasites. For instance the
vellow perch (Perca fluviatilis) can be infected by the cestode worm Triaenophorus
nodulosus. The characteristics of the parasite load distribution in the perch is shown
in the Figure which reports the mean parasite load and the clumping parameter k.
The yellow perch lives 5 years in the average. The mortality inflicted to the fish by
the macroparasite is not easy to quantify, but one can approximately assume that a
parasite load of 5 worms per fish inflicts a mortality which is about half the natural
mortality of the perch. The estimated carrying capacity of the perch (e.g. in Lake
Varese, northern Italy) is about 6,000 individuals km~—2. Its intrinsic instantaneous
rate of increase is approximately 0.05year—'. The average life time of the adult T.
nodulosus is not exactly known but can be assumed to be about 2 years.

Assume that the basic reproduction number of the disease is 1.2 and that the
average parasite load reported in the Figure is the one that would establish at the
equilibrium between hosts and parasites. By using the model by Anderson and May
(1978). evaluate the abundance of hosts at equilibrium. Also, estimate the values of
the two parameters A and Hy in the relationship AH /( Hy + H) that links the fertility
of one adult worm to the host density.



Problem PD11 Distribution
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Solution
dH (. H)
—=rHL1——J —-aP
dt K
dP APH k+1 P?
—=——-(m+u+a)P-a———
dt H+H 0 k H

(a) First determine the value of @ as 5a = 0.5y, that is = 0.02 year'!. The abundance of hosts
at equilibrium can be found by setting Z—i] =0=r (1 — g) — a% and considering that P/H

=0.873. It turns out H,, = K (1 — %(P/H)) = 3904.8 individuals km™.

. . . . A
(b) First, set 2 _ 0, which implies that "o m+u+a)— X212 — 0, Second, remember
dt H+H, k H
A . . .
that R, = K L~ 12 Inthis way we get a system of two equations in the two
Hog+K m+u+a

unknowns A and Ho.
Solving the system we obtain A = 1.25 and Ho =2711.1 individuals km™.



Problem PD12

The blue partridge of the Po valley (Lagopus padanus, a fantasy species) is often
infested by nematode worms of the genus Trichonicus, which are not lethal, but
have noxious effects on the bird fertility. When the partridge population is disease-
free, the carrying capacity is K = 40 individuals km—2, while the death rate is . =
0.2 year—! and the intrinsic rate of demographic increase is r = 0.1 year—!. Lat
L be the parasite load (i.e. the average number of adult worms inside the guts of
each partridge); then the decrease of the per capita natality rate is e[ with £ =
0.05 (No. of parasites/No. of partridges)—! year—!. The death rate m of the parasite
is 0.6 year—', while its reproduction rate (year—') is a function of the density H of
partridges: 2H /(10 4+ H).

Find the coexistence equilibrium belween parasites and hosts. Then graph the
isoclines and determine the epidemiological dynamics.

Solution

d—H: Hfl—ﬂ\—gP
a k)
d_P: APH —(m+ u)P
dt H+H,

Setting z—i = 0 we obtain Heg = 6.67 individuals km™. Then from the equation Z—f = 0 one gets Peg =

11.11 individuals km2. As Heq < K/2 = 20 individuals km, the isoclines are of the kind shown in

Fig. 10.16b of the textbook, so that the equilibrium is unstable and the dynamics are self-sustained
oscillations.



