## Basics of probability

- Sample space  $\Omega$  is the set of all possible sample points  $\omega \in \Omega$ 
  - **Example 0**. Tossing a coin:  $\Omega = \{H,T\}$
  - **Example 1**. Casting a die:  $\Omega = \{1, 2, 3, 4, 5, 6\}$
  - **Example 2**. Number of customers in a queue:  $\Omega = \{0, 1, 2, ...\}$
  - **Example 3**. Call holding time (e.g. in minutes):  $\Omega = \{x \in \Re \mid x \ge 0\}$
- Events  $A, B, C, ... \subset \Omega$  are subsets of the sample space  $\Omega$ 
  - **Example 1**. "Even numbers of a die":  $A = \{2,4,6\}$
  - **Example 2**. "No customers in a queue":  $A = \{0\}$
  - **Example 3**. "Call holding time greater than 3.0 (min)":  $A = \{x \in \Re \mid x > 3.0\}$
- Denote by  $\mathcal{F}$  the set of all events  $A \in \mathcal{F}$ 
  - Sure event: The sample space  $\Omega \in \mathcal{F}$  itself
  - Impossible event: The empty set  $\emptyset \in \mathcal{F}$





## Combining events

- Union "A or B":
- Intersection "A and B":
- **Complement** "not A":
- Events A and B are **disjoint** if

 $- A \cap B = \emptyset$ 

- A set of events  $\{B_1, B_2, \ldots\}$  is a **partition** of event *A* if
  - (i)  $B_i \cap B_j = \emptyset$  for all  $i \neq j$
  - $(ii) \cup_i B_i = A$









#### Probability rules

- **Probability** of event *A* is denoted by P(A),  $P(A) \in [0,1]$ 
  - Probability measure *P* is thus a real-valued set function defined on the set of events  $\mathcal{F}, P: \mathcal{F} \rightarrow [0,1]$
- Properties:
  - $(i) \quad 0 \le P(A) \le 1$
  - $(ii) \quad P(\emptyset) = 0$
  - $(iii) P(\Omega) = 1$
  - $(iv) P(A^c) = 1 P(A)$
  - (v)  $P(A \cup B) = P(A) + P(B) P(A \cap B)$
  - $(vi) A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$
  - (*vii*)  $\{B_i\}$  is a partition of  $A \Rightarrow P(A) = \sum_i P(B_i)$
  - (viii)  $A \subset B \Rightarrow P(A) \le P(B)$



## Examples

Tossing a coin:  $\Omega = \{H,T\}$ 

• Fair coin: *P*(H)=*P*(T)=0.5





Casting a die:  $\Omega = \{1, 2, 3, 4, 5, 6\}$ 

• Fair die: P(1)=P(2)=P(3)=P(4)=P(5)=P(6)=1/6

Number of individuals in a population:  $\Omega = \{0, 1, 2, 3, 4, 5, 6, ...\}$ 

- Countable infinity of sample points
- *P*(0)=probability of extinction, to be estimated
- $\sum_{i=0,...\infty} P(i) = 1$

## Conditional probability

- Assume that P(B) > 0
- **Definition**: The **conditional probability** of event A **given** that event B occurred is defined as

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

• It follows that

 $P(A \cap B) = P(B)P(A \mid B) = P(A)P(B \mid A)$ 

Example

- Draw an ace from a deck of cards
- Draw a black ace



#### Statistical independence

• **Definition**: Events *A* and *B* are **independent** if

$$P(A \cap B) = P(A)P(B)$$

• It follows that

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A)$$

• Correspondingly:

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)} = \frac{P(A)P(B)}{P(A)} = P(B)$$

## Borel's law of large numbers

- If an experiment is repeated a large number of times, independently under identical conditions, then the proportion of times that any specified event occurs approximately equals the probability of the event's occurrence on any particular trial; the larger the number of repetitions, the better the approximation tends to be.
- More precisely, if *E* denotes the event in question, *p*(*E*) its probability of occurrence, and *N<sub>n</sub>*(*E*) the number of times *E* occurs in the first *n* trials, then with probability one

 $N_n(E)/n \to p(E)$  as  $n \to \infty$ 

• This theorem makes rigorous the intuitive notion of probability as the long-run relative frequency of an event's occurrence. It is a special case of any of several more general laws of large numbers in probability theory.

## Random variables

Definition: Real-valued random variable X is a real-valued function that associates each sample point  $\omega \in \Omega$  with a real number  $X(\omega)$ 

#### Example

A coin is tossed three times

•Sample space:

 $\Omega = \{(\omega 1, \omega 2, \omega 3) | \omega_i \in \{H, T\}, i = 1, 2, 3\}$ 

• Let X be the random variable that tells the total number of tails in these three experiments:

| Ω    | HHH | HHT | HTH | THH | HTT | THT | TTH | TTT |
|------|-----|-----|-----|-----|-----|-----|-----|-----|
| Χ(ω) | 0   | 1   | 1   | 1   | 2   | 2   | 2   | 3   |

## Random variables

In many cases each sample point  $\omega \in \Omega$  is indeed a number. So the association is already there

Examples

- Number of individuals in a population: Ω={0,1,2,3,4,5,6,...}, all the nonnegative integers
- Body weight (g) of individuals in a population: Ω= all real positive numbers
- Fraction of populations becoming extinct in a landscape:  $\Omega$  = all real numbers between 0 and 1

#### Discrete random variables

The random variable X can assume only a finite or countably infinite set A of values.

- finite,  $A = \{x_1, ..., x_n\}$ , or
- countably infinite,  $A = \{x_1, x_2,...\}$

The distribution P of X is determined by the point probabilities  $p_i$ ,  $p_i:=P\{X=x_i\}, x_i \in A$ 

#### Example

- Probability that the number N of individuals in a population is
   6: p<sub>6</sub> = P{N=6}
- Probability that the number b of alleles type B among all the genes of a population are 36: p<sub>36</sub> =P{b=36}

#### Expected value

- Definition: The expectation (mean value) of X is defined by
  - $E[X] = \sum_{i} p_{i} x_{i}$
- Properties:
- (i) c is a constant  $\Rightarrow$  E[cX]=cE[X]
- (ii) E[X+Y]=E[X]+E[Y]
- (iii) X and Y independent , that is  $P\{X = x_i, Y = y_j\} = P\{X = x_i\}P\{Y = y_j\}$   $\Rightarrow E[XY] = E[X]E[Y]$

#### Variance

• Definition: The variance of X is the expected value of the square deviation from its mean E[X], namely it is defined by

 $\sigma^2 = Var[X] = E[(X - E[X])^2] = \sum_i p_i (x_i - E[X])^2$ 

- Useful formula (prove!):
   Var[X]= E[X<sup>2</sup>]-E[X]<sup>2</sup>
- Properties:
- (i) c is a constant  $\Rightarrow$  Var[cX]=c<sup>2</sup>Var[X]
- (ii) X and Y independent  $\Rightarrow$  Var[X+Y]= Var[X] + Var[Y]

The standard deviation  $\boldsymbol{\sigma}$  is the square root of the variance

#### Example

A coin is tossed three times

•Sample space:

 $\Omega = \{(\omega 1, \omega 2, \omega 3) | \omega_i \in \{H, T\}, i = 1, 2, 3\}$ 

• Let *X* be the random variable that tells the total number of tails in these three experiments:

| Ω    | ННН | HHT | HTH | THH | HTT | THT | TTH | TTT |
|------|-----|-----|-----|-----|-----|-----|-----|-----|
| Χ(ω) | 0   | 1   | 1   | 1   | 2   | 2   | 2   | 3   |

 $p_0 = 1/8$   $p_1 = 3/8$   $p_2 = 3/8$   $p_3 = 1/8$   $E[X] = \sum_i p_i x_i = 0 \times 1/8 + 1 \times 3/8 + 2 \times 3/8 + 3 \times 1/8 = (0+3+6+3)/8 = 1.5$  $\sigma^2 = Var[X] = E[(X-E[X])^2] = \sum_i p_i (x_i - E[X])^2 = (0-1.5)^2 \times 1/8$  etc.

## Bernoulli distribution

#### $X \sim \text{Bernoulli}(p), p \in (0,1)$

describes a simple random experiment with two possible
 outcomes: success or failure, e.g. coin tossing; X is the number of
 successes (e.g. allele A), so either X = 0 or X = 1

– success with probability p (and failure with probability 1-p)

P{X=0}=1-p, P{X=1}=p

- •Mean value:  $E[X]=(1-p)\cdot 0+p\cdot 1=p$
- •Second moment:  $E[X^2] = (1 p) \cdot 0^2 + p \cdot 1^2 = p$
- •Variance: Var[X]= E[X<sup>2</sup>]-E[X]<sup>2</sup> = p-p<sup>2</sup>=p(1-p)

 $Var[X] = E[(X-E[X])^2] = (0-p)^2 \cdot (1-p) + (1-p)^2 \cdot p = p^2 - p^3 + p - 2p^2 + p^3$ 

## **Binomial distribution**

#### $X \sim Bin(n,p), n \in \{1,2,...\}, p \in (0,1)$

number of successes in an independent series of simple random experiments (of Bernoulli type);  $X = X_1 + ... + X_n$  (with  $X_i \sim \text{Bernoulli(p)}$ )

- n = total number of experiments
- p = probability of success in any single experiment
- Point probabilities

$$P\{X=i\} = \binom{n}{i}p^i(1-p)^{n-i}$$

$$\binom{n}{i} = \frac{n!}{i!(n-i)!}$$
$$n!=n\cdot(n-1)\cdots 2\cdot 1$$

- Mean value: $E[X] = E[X_1] + ... + E[X_n] = np$
- Variance:  $Var[X] = Var[X_1] + ... + Var[X_n] = np(1 p)$  (independence!)

#### Covariance, correlation, coefficient of variation

• **Definition**: The **covariance** between *X* and *Y* is defined by

$$\sigma_{XY}^2 \coloneqq \operatorname{Cov}[X, Y] \coloneqq E[(X - E[X])(Y - E[Y])]$$

• Useful formula (prove!):

Cov[X,Y] = E[XY] - E[X]E[Y]

• Correlation

 $\rho_{XY} = \text{Cov}[X, Y] / (\sigma_X \sigma_Y)$   $-1 \le \rho_{XY} \le 1$ Variables are uncorrelated if Cov[X, Y] = 0 or  $\rho_{XY} = 0$ 

Two independent variable are always uncorrelated, in particular E[XY]=E[X] E[Y]

Coefficient of variation
 CV = σ<sub>x</sub>/E[X]

#### Continuous random variables

The random variable X can assume any real value (-  $\infty < X < \infty$ ) or any value in an interval of the real axis (e.g. A  $\leq X \leq$  B, X  $\geq$  0).

• We define the cumulative distribution function

 $F_X(x) \coloneqq P\{X \le x\}$ 

and the probability density function

$$F_X(x) := P\{X \le x\} = \int_{-\infty}^{x} f_X(y) \, dy$$

$$P(a \le x \le b) = \int_a^b f_X(x) \, dx$$

$$P\left\{A \le X \le B\right\} = \int_{A}^{B} f_{x}(y) dy$$
$$\int_{-\infty}^{+\infty} f_{x}(y) dy = 1$$

#### Expected value and variance

$$E[X] = \mu_x = \int_{-\infty}^{+\infty} f_x(y) y dy$$

$$Var[X] = E[(X - \mu_x)^2] = \int_{-\infty}^{+\infty} f_x(y)(y - \mu_x)^2 dy$$

Same properties as in the discrete case

$$SD = \sigma_x = \sqrt{Var[X]}$$
 Standard deviation  
 $CV = \sigma_x / \mu_x$  Coefficient of variation

#### Standard normal (Gaussian) distribution

 $X \sim N(0,1)$ 

• Probability density function (pdf):

$$f_X(x) = \varphi(x) := \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}$$

Cumulative distribution function (cdf):

$$F_X(x) \coloneqq P\{X \le x\} = \Phi(x) \coloneqq \int_{-\infty}^x \varphi(y) \, dy$$

E[X] = 0Var [X] = 1



# Normal (Gaussian) general distribution $X \sim N(\mu, \sigma^2), \quad \mu \in \Re, \quad \sigma > 0$

 $\mu$  is the mean value,  $\sigma^{\rm 2}$  the variance,  $\sigma$  the standard deviation

Probability density function (pdf):

$$f_X(x) = F_X'(x) = \frac{1}{\sigma} \varphi\left(\frac{x-\mu}{\sigma}\right)$$

$$\varphi(x) \coloneqq \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}$$

$$f_{X}(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}$$

#### Tables of (standard) normal distribution



#### STANDARD NORMAL TABLE (Z)

Entries in the table give the area under the curve between the mean and z standard deviations above the mean. For example, for z = 1.25 the area under the curve between the mean (0) and z is 0.3944.

| z   | 0.00   | 0.01   | 0.02   | 0.03   | 0.04   | 0.05   | 0.06   | 0.07   | 0.08   | 0.09   |
|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 0.0 | 0.0000 | 0.0040 | 0.0080 | 0.0120 | 0.0160 | 0.0190 | 0.0239 | 0.0279 | 0.0319 | 0.0359 |
| 0.1 | 0.0398 | 0.0438 | 0.0478 | 0.0517 | 0.0557 | 0.0596 | 0.0636 | 0.0675 | 0.0714 | 0.0753 |
| 0.2 | 0.0793 | 0.0832 | 0.0871 | 0.0910 | 0.0948 | 0.0987 | 0.1026 | 0.1064 | 0.1103 | 0.1141 |
| 0.3 | 0.1179 | 0.1217 | 0.1255 | 0.1293 | 0.1331 | 0.1368 | 0.1406 | 0.1443 | 0.1480 | 0.1517 |
| 0.4 | 0.1554 | 0.1591 | 0.1628 | 0.1664 | 0.1700 | 0.1736 | 0.1772 | 0.1808 | 0.1844 | 0.1879 |
| 0.5 | 0.1915 | 0.1950 | 0.1985 | 0.2019 | 0.2054 | 0.2088 | 0.2123 | 0.2157 | 0.2190 | 0.2224 |
| 0.6 | 0.2257 | 0.2291 | 0.2324 | 0.2357 | 0.2389 | 0.2422 | 0.2454 | 0.2486 | 0.2517 | 0.2549 |
| 0.7 | 0.2580 | 0.2611 | 0.2642 | 0.2673 | 0.2704 | 0.2734 | 0.2764 | 0.2794 | 0.2823 | 0.2852 |
| 0.8 | 0.2881 | 0.2910 | 0.2939 | 0.2969 | 0.2995 | 0.3023 | 0.3051 | 0.3078 | 0.3106 | 0.3133 |
| 0.9 | 0.3159 | 0.3186 | 0.3212 | 0.3238 | 0.3264 | 0.3289 | 0.3315 | 0.3340 | 0.3365 | 0.3389 |
| 1.0 | 0.3413 | 0.3438 | 0.3461 | 0.3485 | 0.3508 | 0.3513 | 0.3554 | 0.3577 | 0.3529 | 0.3621 |
| 1.1 | 0.3643 | 0.3665 | 0.3686 | 0.3708 | 0.3729 | 0.3749 | 0.3770 | 0.3790 | 0.3810 | 0.3830 |
| 1.2 | 0.3849 | 0.3869 | 0.3888 | 0.3907 | 0.3925 | 0.3944 | 0.3962 | 0.3980 | 0.3997 | 0.4015 |
| 1.3 | 0.4032 | 0.4049 | 0.4066 | 0.4082 | 0.4099 | 0.4115 | 0.4131 | 0.4147 | 0.4162 | 0.4177 |
| 1.4 | 0.4192 | 0.4207 | 0.4222 | 0.4236 | 0.4251 | 0.4265 | 0.4279 | 0.4292 | 0.4306 | 0.4319 |
| 1.5 | 0.4332 | 0.4345 | 0.4357 | 0.4370 | 0.4382 | 0.4394 | 0.4406 | 0.4418 | 0.4429 | 0.4441 |
| 1.6 | 0.4452 | 0.4463 | 0.4474 | 0.4484 | 0.4495 | 0.4505 | 0.4515 | 0.4525 | 0.4535 | 0.4545 |
| 1.7 | 0.4554 | 0.4564 | 0.4573 | 0.4582 | 0.4591 | 0.4599 | 0.4608 | 0.4616 | 0.4625 | 0.4633 |
| 1.8 | 0.4641 | 0.4649 | 0.4656 | 0.4664 | 0.4671 | 0.4678 | 0.4686 | 0.4693 | 0.4699 | 0.4706 |
| 1.9 | 0.4713 | 0.4719 | 0.4726 | 0.4732 | 0.4738 | 0.4744 | 0.4750 | 0.4756 | 0.4761 | 0.4767 |
| 2.0 | 0.4772 | 0.4778 | 0.4783 | 0.4788 | 0.4793 | 0.4798 | 0.4803 | 0.4808 | 0.4812 | 0.4817 |
| 2.1 | 0.4821 | 0.4826 | 0.4830 | 0.4834 | 0.4838 | 0.4842 | 0.4846 | 0.4850 | 0.4854 | 0.4857 |
| 2.2 | 0.4861 | 0.4864 | 0.4868 | 0.4871 | 0.4875 | 0.4878 | 0.4881 | 0.4884 | 0.4887 | 0.4890 |
| 2.3 | 0.4893 | 0.4896 | 0.4898 | 0.4901 | 0.4904 | 0.4906 | 0.4909 | 0.4911 | 0.4913 | 0.4916 |
| 2.4 | 0.4918 | 0.4920 | 0.4922 | 0.4925 | 0.4927 | 0.4929 | 0.4931 | 0.4932 | 0.4934 | 0.4936 |
| 2.5 | 0.4938 | 0.4940 | 0.4941 | 0.4943 | 0.4945 | 0.4946 | 0.4948 | 0.4949 | 0.4951 | 0.4952 |
| 2.6 | 0.4953 | 0.4955 | 0.4956 | 0.4957 | 0.4959 | 0.4960 | 0.4961 | 0.4962 | 0.4963 | 0.4964 |
| 2.7 | 0.4965 | 0.4966 | 0.4967 | 0.4968 | 0.4969 | 0.4970 | 0.4971 | 0.4972 | 0.4973 | 0.4974 |
| 2.8 | 0.4974 | 0.4975 | 0.4976 | 0.4977 | 0.4977 | 0.4978 | 0.4979 | 0.4979 | 0.4980 | 0.4981 |
| 2.9 | 0.4981 | 0.4982 | 0.4982 | 0.4983 | 0.4984 | 0.4984 | 0.4985 | 0.4985 | 0.4986 | 0.4986 |
| 3.0 | 0.4987 | 0.4987 | 0.4987 | 0.4988 | 0.4988 | 0.4989 | 0.4989 | 0.4989 | 0.4990 | 0.4990 |
| 3.1 | 0.4990 | 0.4991 | 0.4991 | 0.4991 | 0.4992 | 0.4992 | 0.4992 | 0.4992 | 0.4993 | 0.4993 |
| 3.2 | 0.4993 | 0.4993 | 0.4994 | 0.4994 | 0.4994 | 0.4994 | 0.4994 | 0.4995 | 0.4995 | 0.4995 |
| 3.3 | 0.4995 | 0.4995 | 0.4995 | 0.4996 | 0.4996 | 0.4996 | 0.4996 | 0.4996 | 0.4996 | 0.4997 |
| 3.4 | 0.4997 | 0.4997 | 0.4997 | 0.4997 | 0.4997 | 0.4997 | 0.4997 | 0.4997 | 0.4997 | 0.4998 |



TABLE 1 CUMULATIVE PROBABILITIES FOR THE STANDARD NORMAL DISTRIBUTION (Continued)

## Meaning of the normal distribution

- Let  $X_1, ..., X_n$  be independent and identically distributed (IID) with mean  $\mu$  and variance  $\sigma^2$
- Denote the average (sample mean) as follows:

$$\overline{X}_n \coloneqq \frac{1}{n} \sum_{i=1}^n X_i$$

• Then (prove!)

$$E[\overline{X}_n] = \mu$$

In the limit (large *n*) the sample mean is distributed like a Normal

$$\overline{X}_n \approx \mathrm{N}(\mu, \frac{1}{n}\sigma^2)$$

#### Sample mean and sample variance

Theoretically the variance is

 $\sigma^2 = Var[X] = E[(X - E[X])^2] = E[(X - \mu)^2]$ 

However, one does not know  $\mu$ , but only its sample mean, an estimate of  $\mu$ 

$$\overline{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$$

The sample variance is calculated using the sample mean and subtracting one degree of freedom

$$s_n^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x}_n)^2$$

## Median and mode Mode PDF $f_X(x)$ $\mathbf{P}(a \leq X \leq b)$ $\mathbf{P}(a \le X \le b) = \int_{a}^{b} f_X(x) dx$

 $P(X \le Median) = 0.5 = value of x where cdf is 0.5$ Mode = most probable value = value at which pdf is maximum i.e.  $f_X(x_{mode}) = max$ For Normal distribution mean, median and mode coincide, but in general they do not

## Lognormal distribution

#### A random variable whose logarithm is normally distributed

In many cases a random variable can be seen as the product of *n* independent variables (e.g. total survival is the product of survival from egg to larva times survival from larva to stage 1 nymph times survival from stage 1 to stage 2 etc. Thus the logarithm of product is the sum of single logarithms. Apply the limit of the sum of independent variables.

