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4. Basic probability theory

Sample space, sample points, events

• Sample space�Ω�is the set of all possible sample points�ω ∈ Ω

– Example 0. Tossing a coin: Ω�= {H,T}

– Example 1. Casting a die: Ω�= {1,2,3,4,5,6}

– Example 2. Number of customers in a queue: Ω = {0,1,2,...}

– Example 3. Call holding time (e.g. in minutes): Ω = {x�∈ ℜ�| x�> 0}

• Events�A,B,C,...�⊂ Ω�are subsets of the sample space Ω

– Example 1. “Even numbers of a die”: A�= {2,4,6}

– Example 2. “No customers in a queue”: A�= {0}

– Example 3. “Call holding time greater than 3.0 (min)”:  A�= {x�∈ ℜ�| x�> 3.0}

• Denote by the set of all events A�∈
– Sure event: The sample space Ω ∈  itself

– Impossible event: The empty set ∅ ∈
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Combining events
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4. Basic probability theory

Combination of events

• Union “A or B”: A ∪ B = {ω ∈ Ω | ω ∈ A or ω ∈ B}

• Intersection “A and B”: A ∩ B = {ω ∈ Ω | ω ∈ A and ω ∈ B}

• Complement “not A”: Ac = {ω ∈ Ω | ω ∉ A}

• Events A and B are disjoint if 

– A ∩ B = ∅

• A set of events {B
1
, B

2
, …} is a partition of event A if 

– (i)  Bi ∩ Bj = ∅ for all i ≠ j

– (ii) ∪i Bi = A
B
1

B
2

B
3

A

A

B

A
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Probability rules
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Probability

• Probability of event A is denoted by P(A), P(A) ∈ [0,1]

– Probability measure P is thus 

a real-valued set function defined on the set of events , P : → [0,1]

• Properties:

– (i)     0 ≤P (A) ≤1

– (ii)    P (∅) = 0

– (iii)   P (Ω) = 1

– (iv)   P (Ac) = 1 −P (A)

– (v)    P (A ∪ B) = P (A) + P (B) −P (A ∩ B)

– (vi)   A ∩ B = ∅⇒ P (A ∪ B) = P (A) + P (B)

– (vii)  {Bi} is a partition of A ⇒ P (A) = Σi P (Bi)

– (v iii)  A ⊂ B ⇒ P (A) ≤P (B)

A

B

W



Examples

Tossing a coin: W={H,T}
• Fair coin: P(H)=P(T)=0.5

Casting a die: W={1,2,3,4,5,6}
• Fair die: P(1)=P(2)= P(3)=P(4)= P(5)=P(6)= 1/6

Number of individuals in a population: W={0,1,2,3,4,5,6,...}
• Countable infinity of sample points
• P(0)=probability of extinction, to be estimated
• Si=0,…∞P(i) = 1



Conditional probability
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Conditional probability

• Assume that P(B) > 0

• Definition: The conditional probability of event A 
given that event B occurred is defined as

• It follows that 
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Example
• Draw an ace from a deck of 

cards
• Draw a black ace



Statistical independence
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Statistical independence of events

• Definition: Events A and B are independent if

• It follows that

• Correspondingly: 
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Borel’s law of large numbers
• If an experiment is repeated a large number of times, independently

under identical conditions, then the proportion of times that any
specified event occurs approximately equals the probability of the 
event's occurrence on any particular trial; the larger the number of 
repetitions, the better the approximation tends to be.

• More precisely, if E denotes the event in question, p(E) its
probability of occurrence, and Nn(E) the number of times E occurs in 
the first n trials, then with probability one

Nn(E) /n → p(E) as n → ∞
• This theorem makes rigorous the intuitive notion of probability as

the long-run relative frequency of an event's occurrence. It is a 
special case of any of several more general laws of large numbers
in probability theory. 



Random variables
Definition: Real-valued random variable X is a real-valued
function that associates each sample point ω ∈ Ω with a real
number X(ω)

Example
A coin is tossed three times
•Sample space: 
Ω={(ω1,ω2,ω3)|ωi∈{H,T},i=1,2,3}
• Let X be the random variable that tells the total number of tails
in these three experiments: 

Ω HHH HHT HTH THH HTT THT TTH TTT 
X(ω) 0 1 1 1 2 2 2 3 

 



Random variables
In many cases each sample point ω ∈ Ω is indeed a number. So the 
association is already there

Examples
• Number of individuals in a population: W={0,1,2,3,4,5,6,...}, all

the nonnegative integers
• Body weight (g) of individuals in a population: W= all real

positive numbers
• Fraction of populations becoming extinct in a landscape: W = all

real numbers between 0 and 1



Discrete random variables
The random variable X can assume only a finite or countably
infinite set A of values.
– finite, A = {x1,..., xn}, or 
– countably infinite, A = {x1, x2,...} 

The distribution P of X is determined by the point probabilities pi, 
pi:=P{X=xi}, xi∈ A

Example
• Probability that the number N of individuals in a population is

6: p6 =P{N=6}
• Probability that the number b of alleles type B among all the 

genes of a population are 36: p36 =P{b=36}



Expected value
• Definition: The expectation (mean value) of X is
defined by 

E[X]= ∑ipixi

• Properties:
– (i) c is a constant ⇒E[cX]=cE[X] 
– (ii) E[X+Y]=E[X]+E[Y] 
– (iii) X and Y independent , that is

P{X = xi,Y = yj}= P{X = xi}P{Y = yj} 
⇒ E[XY] = E[X]E[Y] 



Variance
• Definition: The variance of X is the expected value of the 
square deviation from its mean E[X], namely it is defined
by

σ2 = Var[X]=E[(X−E[X])2] = ∑ipi (xi - E[X])2

• Useful formula (prove!): 
Var[X]= E[X2]−E[X]2

• Properties:
– (i) c is a constant ⇒Var[cX]=c2Var[X]
– (ii) X and Y independent ⇒ Var[X+Y]= Var[X] + Var[Y]

The standard deviation σ is the square root of the 
variance



Example
A coin is tossed three times
•Sample space: 
Ω={(ω1,ω2,ω3)|ωi∈{H,T},i=1,2,3}
• Let X be the random variable that tells the total number of tails
in these three experiments: 

Ω HHH HHT HTH THH HTT THT TTH TTT 
X(ω) 0 1 1 1 2 2 2 3 

 
p0 = 1/8   p1 = 3/8   p2 = 3/8     p3 = 1/8 
E[X]= ∑ipixi = 0×1/8+1×3/8+2×3/8+3×1/8= (0+3+6+3)/8 = 1.5
σ2 = Var[X]=E[(X−E[X])2] = ∑ipi (xi - E[X])2 = (0-1.5)2×1/8 etc.



Bernoulli distribution

X ∼Bernoulli(p), p ∈ (0,1)
– describes a simple random experiment with two possible
outcomes: success  or failure, e.g. coin tossing; X is the number of 
successes (e.g. allele A), so either X = 0 or X = 1
– success with probability p (and failure with probability 1 − p) 

P{X=0}=1−p, P{X=1}=p
•Mean value: E[X]=(1−p)⋅0+p⋅1=p
•Second moment: E[X2] = (1 − p)⋅02 + p⋅12 = p
•Variance: Var[X]= E[X2]−E[X]2 = p−p2=p(1−p) 
Var[X]= E[(X-E[X])2]=(0-p)2 ⋅(1-p)+(1-p)2 ⋅p=p2-p3+p-2p2+p3



Binomial distribution

X ∼Bin(n,p), n ∈{1,2,...}, p ∈ (0,1) 
number of successes in an independent series of simple random 
experiments (of Bernoulli type); X = X1 + ... + Xn
(with Xi ∼ Bernoulli(p)) 
• n = total number of experiments
• p = probability of success in any single experiment
• Point probabilities

• Mean value:E[X]=E[X1]+...+E[Xn]=np
• Variance: Var[X] = Var[X1] + ... + Var[Xn] = np(1 − p) (independence!)
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Binomial distribution

– number of successes in an independent series of simple random 

experiments (of Bernoulli type); X = X
1
+ … + X

n
(with X

i
∼ Bernoulli(p))

– n = total number of experiments

– p = probability of success in any single experiment

• Value set: SX = {0,1,…,n}

• Point probabilities:

• Mean value: E[X ] = E[X 1 ] + … + E[Xn] = np

• Variance: D2 [X ] = D2 [X 1 ] + … + D2 [Xn] = np(1 − p) (independence!)
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Covariance, correlation, coefficient of variation
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4. Basic probability theory

Covariance

• Definition: The covariance between X and Y is defined by

• Useful formula (prove!):

• Properties: 

– (i)   Cov[X,X] = Var[X]

– (ii)  Cov[X,Y] = Cov[Y,X]

– (iii) Cov[X+Y,Z] = Cov[X,Z] + Cov[Y,Z]

– (iv) X and Y independent ⇒ Cov[X,Y] = 0

])][])([[(:],[Cov: 2
YEYXEXEYXXY −−==σ

][][][],Cov[ YEXEXYEYX −=

• Correlation
𝜌XY = Cov[X,Y]/(𝜎X 𝜎Y)       -1 ≤ 𝜌XY ≤1

Variables are uncorrelated if Cov[X,Y] = 0 or 𝜌XY = 0
Two independent variable are always uncorrelated, in particular

E[XY]=E[X] E[Y]
• Coefficient of variation

CV = 𝜎X/E[X] 



Continuous random variables
The random variable X can assume any real value (- ∞ < X < ∞) 
or any value in an interval of the real axis (e.g. A ≤ X ≤ B,  X ≥ 0).
• We define the cumulative distribution function

• and the probability density function
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Continuous random variables

• Definition: Random variable X is continuous if 

there is an integrable function f
X
: ℜ→ ℜ

+
such that for all x ∈ ℜ

• The function f
X

is called the probability density function (pdf)

– The set S
X
, where f

X
> 0, is called the value set

• Properties:

– (i)   P{X = x} = 0  for all x ∈ ℜ

– (ii)  P{a < X < b} = P{a ≤X ≤b} = ∫
a
b f

X
(x) dx

– (iii)  P{X ∈ A} = ∫
A

f
X
(x) dx

– (iv)  P{X ∈ ℜ} = ∫
-∞

∞ f
X
(x) dx = ∫

S
X

f
X
(x) dx = 1

∫
∞−

=≤=
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Continuous random variables

• Definition: Random variable X is continuous if 

there is an integrable function f
X
: ℜ→ ℜ

+
such that for all x ∈ ℜ

• The function f
X

is called the probability density function (pdf)

– The set S
X
, where f

X
> 0, is called the value set
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Expected value and variance

E X⎡⎣ ⎤⎦ = µx = fx
−∞

+∞

∫ ( y)ydy

Var X⎡⎣ ⎤⎦ = E (X − µx )
2⎡⎣ ⎤⎦ = fx

−∞

+∞

∫ ( y)( y − µx )
2dy

Same properties as in the discrete case

SD=σ x = Var X⎡⎣ ⎤⎦

CV =σ x
µx

Standard deviation

Coefficient of variation



Standard normal (Gaussian) distribution
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Standard normal (Gaussian) distribution

– limit of the “normalized” sum of IID r.v.s with mean 0 and variance 1 (cf. 
slide 48)

• Value set: S
X

= (−∞,∞)

• Probability density function (pdf):

• Cumulative distribution function (cdf):

• Mean value: E[X ] = 0 (symmetric pdf)

• Variance: D2[X ] = 1
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Standard normal (Gaussian) distribution

– limit of the “normalized” sum of IID r.v.s with mean 0 and variance 1 (cf. 
slide 48)

• Value set: S
X

= (−∞,∞)

• Probability density function (pdf):

• Cumulative distribution function (cdf):

• Mean value: E[X ] = 0 (symmetric pdf)

• Variance: D2[X ] = 1
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E[X] = 0
Var [X] = 1



pdf  probability
density

cdf cumulative 
probability



Normal (Gaussian) general distribution
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Normal (Gaussian) distribution

– if (X − µ)/σ ∼ N(0,1)

• Value set: S
X

= (−∞,∞)

• Probability density function (pdf):

• Cumulative distribution function (cdf):

• Mean value: E[X ] = µ + σE[(X − µ)/σ] = µ (symmetric pdf around µ)

• Variance: D2[X ] = σ2D2[(X − µ)/σ] = σ2
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𝜇 is the mean value, 𝜎2 the variance, 𝜎 the standard 
deviation
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Normal (Gaussian) distribution
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Standard normal (Gaussian) distribution

– limit of the “normalized” sum of IID r.v.s with mean 0 and variance 1 (cf. 
slide 48)

• Value set: S
X

= (−∞,∞)

• Probability density function (pdf):

• Cumulative distribution function (cdf):

• Mean value: E[X ] = 0 (symmetric pdf)

• Variance: D2[X ] = 1
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Tables of (standard) normal distribution



Meaning of the normal distribution
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Average of IID random variables

• Let X1 ,…, Xn be independent and identically distributed (IID) 

with mean µ and variance σ2 

• Denote the average (sample mean) as follows:

• Then (prove!)

∑
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n
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Central limit theorem (CLT)

• Let X
1
,…, X

n
be independent and identically distributed (IID) 

with mean µ and variance σ2 (and the third moment exists)

• Central limit theorem:

• It follows that

)1,0(N)(
i.d.

/

1
→− µ

σ
n

n

X

),(N 21
σµ

n
n

X ≈

In the limit (large n) the sample mean is distributed like a 
Normal



Sample mean and sample variance

Theoretically the variance is
σ2 = Var[X]=E[(X−E[X])2]= E[(X−𝜇)2]

However, one does not know 𝜇, but only its sample mean, an 
estimate of 𝜇

The sample variance is calculated using the sample mean and 
subtracting one degree of freedom

xn =
1
n

xi
i=1

n

∑

sn
2 = 1

n−1 xi − xn( )2
i=1

n

∑



Median and mode

P(X≤Median) = 0.5 = value of x where cdf is 0.5
Mode = most probable value = value at which pdf is
maximum i.e. fX(xmode) = max
For Normal distribution mean, median and mode 
coincide, but in general they do not

Mode



Lognormal distribution
A random variable whose logarithm is normally distributed
• In many cases a random variable can be seen as the product of n independent

variables (e.g. total survival is the product of survival from egg to larva times
survival from larva to stage 1 nymph times survival from stage 1 to stage 2 etc. 
Thus the logarithm of product is the sum of single logarithms. Apply the limit
of the sum of independent variables.

X = exp(𝜇 + 𝜎Z)     where Z is the standard 
normal distribution

E X⎡⎣ ⎤⎦ = exp µ +σ
2

2
⎛

⎝⎜
⎞

⎠⎟

Median X⎡⎣ ⎤⎦ = exp µ( )
Mode X⎡⎣ ⎤⎦ = exp µ −σ 2( )


